DOI QR코드

DOI QR Code

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish

유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성

  • Kim, Jung-Kon (School of Public Health, Seoul National University) ;
  • Park, Ye-Na (School of Public Health, Seoul National University) ;
  • Kim, Woo-Keun (Ecotoxicology Research Center, Korea Institute of Toxicology) ;
  • Kim, Ji-Won (Ecotoxicology Research Center, Korea Institute of Toxicology) ;
  • Lee, Sung-Kyu (Ecotoxicology Research Center, Korea Institute of Toxicology) ;
  • Choi, Kyung-Ho (School of Public Health, Seoul National University)
  • 김정곤 (서울대학교 보건대학원) ;
  • 박예나 (서울대학교 보건대학원) ;
  • 김우근 (안전성평가연구소 환경독성연구센터) ;
  • 김지원 (안전성평가연구소 환경독성연구센터) ;
  • 이성규 (안전성평가연구소 환경독성연구센터) ;
  • 최경호 (서울대학교 보건대학원)
  • Received : 2010.09.06
  • Accepted : 2010.10.25
  • Published : 2010.10.31

Abstract

As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Keywords

References

  1. Editorial: Biomarkers, 1, 1-2, 1996. https://doi.org/10.3109/13547509609079340
  2. Goksoyr, A. and Husoy, A. M.: Immunochemical approaches to studies of CYP1A localization and induction by xenobiotics in fish. EXS, 86, 165-202, 1998.
  3. Goldfarb, P., Livingstone, D. and Birmelin, C. : Biomonitoring in the aquatic environment: use of molecular biomarkers. Biochemical Society Transactions, 26, 690-694, 1998. https://doi.org/10.1042/bst0260690
  4. Bayne, B. L., D. A., B., Burns, K., Dixon, D. R., Ivanovici, A., Livingstone, D. A., Lowe, D. M., Moore, M. N., Stebbing, A. R. D. and Widdings, J. : The effects of stress and pollution on marine animals. New York, USA: Praeger, 1985.
  5. Fernando, G. and Antonio, P. : Biomarker as biological indicators of xenobiotic exposure. Journal of Applied Toxicology, 21, 245-255, 2001. https://doi.org/10.1002/jat.769
  6. Martin-Diaz, M. L., Sales, D. and Del Valls Casillas, T. A. : Influence of salinity in hemolymph vitellogenin of the shore crab Carcinus maenas, to be used as a biomarker of contamination. Bulletin of Environmental Contamination and Toxicology, 73, 870-877, 2004. https://doi.org/10.1007/s00128-004-0507-9
  7. Koponen, K., Huuskonen, S., Ritola, O., Venalainen, R., Tarhanen, J. and Lindstrom-Seppa, P. : Muscle chemical content and hepatic biotransformation in bream (Abramis brama) and asp (Aspius aspius) in a PCB-contaminated lake. Boreal Environment Research, 8, 203-213, 2003.
  8. Machala, M., Dusek, L., Hilscherova, K., Kubinova, R., Jurajda, P., Neca, J., Ulrich, R., Gelnar, M., Studnickova, Z. and Holoubek, I. : Determination and multivariate statistical analysis of biochemical responses to environmental contaminants in feral freshwater fish Leuciscus cephalus L. Environmental Toxicology and Chemistry, 20, 1141-1148, 2001.
  9. Melancon, M. J., Yeo, S. E. and Lech, J. J. : Induction of hepatic microsomal monooxygenase activity in fish by exposure to river water. Environmental Toxicology and Chemistry, 6, 127-135, 1987. https://doi.org/10.1002/etc.5620060207
  10. Monod, G., Devaux, A. and Riviere, J. L. : Effects of chemical pollution on the activities of hepatic xenobiotic metabolizing enzymes in fish from the River Rhone. Science of the Total Environment, 73, 189-201, 1988. https://doi.org/10.1016/0048-9697(88)90428-7
  11. Vindimian, E. and Garric, J. : Freshwater fish cytochrome P450-dependent enzymatic activities: a chemical pollution indicator. Ecotoxicology and Environmental Safety, 18, 277-285, 1989. https://doi.org/10.1016/0147-6513(89)90021-3
  12. Vindimian, E., Namour, P., Migeon, B. and Garric, J. : In situ pollution induced cytochrome P450 activity of freshwater fish: barbel (Barbus barbus), chub (Leuciscus cephalus) and nase (Chondrostoma nasus). Aquatic Toxicology, 21, 255-266, 1991. https://doi.org/10.1016/0166-445X(91)90076-L
  13. Forlin, L., Balk, L., Celander, M., Bergek, S., Hjelt, M., Rappe, C., de Wit, C. and Jansson, B. : Biotransformation enzyme activities and PCDD/PCDF levels in pike caught in a Swedish Lake. Marine Environmental Research, 34, 169-173, 1992. https://doi.org/10.1016/0141-1136(92)90103-S
  14. Hodson, P. V., McWhirter, M., Ralph, K., Gray, B., Thivierge, D., Carey, J. H., Van Der Kraak, G., Whittle, D. M. and Levesque, M.-C. : Effects of bleached kraft mill effluent on fish in the St. Maurice River, Quebec. Environmental Toxicology and Chemistry, 11, 1635-1651, 1992. https://doi.org/10.1002/etc.5620111113
  15. Vigano, L., Arillo, A., Melodia, F., Arlati, P. and Monti, C. : Biomarker responses in cyprinids of the middle stretch of the River Po, Italy. Environmental Toxicology and Chemistry, 17, 404-411, 1998. https://doi.org/10.1002/etc.5620170309
  16. Haasch, M. L., Prince, R., Wejksnora, P. J., Cooper, K. R. and Lech, J. J. : Caged and wild fish: induction of hepatic cytochrome P-450 as an environmental biomonitor. Environmental Toxicology and Chemistry, 12, 885-895, 1993. https://doi.org/10.1002/etc.5620120513
  17. Goksoyr, A., Husoy, A. M., Larsen, H. E., Klungsoyr, J., Wilhelmsen, S., Maage, A., Brevik, E. M., Andersson, T., Celander, M., Pesonen, M. and Forlin, L. : Environmental contaminants and biochemical responses in flatfish from the Hvaler Archipelago in Norway. Archives of Environmental Contamination and Toxicology, 21, 486-496, 1991. https://doi.org/10.1007/BF01183869
  18. Lindstrom-Sepp, P., Huuskonen, S., Pesonen, M., Muona, P. and Haninen, O. : Unbleached pulp mill effluents affect cytochrome P450 monooxygenase enzyme activities. Marine Environmental Research, 34, 157-161, 1992. https://doi.org/10.1016/0141-1136(92)90101-Q
  19. Munkittrick, K. R., Van Der Kraak, G. J., McMaster, M. E. and Portt, C. B. : Response of hepatic MFO activity and plasma sex steroids to secondary treatment of bleached kraft pulp mill effluent and mill shutdown. Environmental Toxicology and Chemistry, 11, 1427-1439, 1992. https://doi.org/10.1897/1552-8618(1992)11[1427:ROHMAA]2.0.CO;2
  20. Kloepper-Sams, P. J., Swanson, S. M., Marchant, T., Schryer, R. and Owens, J. W. : Exposure of fish to biologically treated bleached kraft effluent.1: Biochemical, physiological, and pathological assessment of Rocky Mountain whitefish (Prosopiumwilliamsoni) and longnose suckers (Catostomus catostomus). Environmental Toxicology and Chemistry, 13, 1469-1482, 1994. https://doi.org/10.1002/etc.5620130910
  21. Ahokas, J. T., Holdway, D. A., Brennan, S. E., Goudey, R. W. and Bibrowski, H. B. : MFO activity in carp (Cyprinus carpio) exposed to treated pulp and paper mill effluent in Lake Coleman, Victoria, Australia, in relation to AOX, EOX and muscle PCDD/ PCDF. Environmental Toxicology and Chemistry, 13, 41-50, 1994. https://doi.org/10.1002/etc.5620130108
  22. Lindstroum-Seppa, P. and Oikari, A. : Biotransformation activities of feral fish in waters receiving bleached pulp mill effluents. Environmental Toxicology and Chemistry, 9, 1415-1424, 1990. https://doi.org/10.1897/1552-8618(1990)9[1415:BAOFFI]2.0.CO;2
  23. Curtis, L. R., Carpenter, H. M., Donohoe, R. M., Williams, D. E., Hedstrom, O. R., Deinzer, M. L., Beilstein, M. A., Foster, E. and Gates, R. : Sensitivity of cytochrome P450-1A1 induction in fish as a biomarker for distribution of TCDD and TCDF in the Willamette River, Oregon. Environmental Science & Technology, 27, 2149-2157, 1993. https://doi.org/10.1021/es00047a022
  24. Van der Oost, R., Heida, H., Opperhuizen, A. and Vermeulen, N. P. : Interrelationships between bioaccumulation of organic trace pollutants (PCBs, organochlorine pesticides and PAHs), and MFO-induction in fish. Comparative Biochemistry and Physiology. C, 100, 43-47, 1991. https://doi.org/10.1016/0742-8413(91)90119-E
  25. Kantoniemi, A., Vahakangas, K. and Oikari, A. : The Capacity of Liver Microsomes to Form Benzo[a] Pyrene-Diolepoxide-DNA Adducts and Induction of Cytochrome P450 1A in Feral Fish Exposed to Pulp Mill Effluents. Ecotoxicology and Environmental Safety, 35, 136-141, 1996. https://doi.org/10.1006/eesa.1996.0092
  26. Adams, S. M., Crumby, W. D., Greeley, M. S., Jr., Shugart, L. R. and Saylor, C. F. : Responses of fish populations and communities to pulp mill effluents: a holistic assessment. Ecotoxicology and Environmental Safety, 24, 347-360, 1992. https://doi.org/10.1016/0147-6513(92)90011-Q
  27. Sanchez, W., Katsiadaki, I., Piccini, B., Ditche, J. M. and Porcher, J. M. : Biomarker responses in wild three-spined stickleback (Gasterosteus aculeatus L.) as a useful tool for freshwater biomonitoring: a multiparametric approach. Environment International, 34, 490-498, 2008. https://doi.org/10.1016/j.envint.2007.11.003
  28. Slooff, W., Van Kreijl, C. F. and Baars, A. J. : Relative liver weights and xenobiotic-metabolizing enzymes of fish from polluted surface waters in the Netherlands. Aquatic Toxicology, 4, 1-14, 1983. https://doi.org/10.1016/0166-445X(83)90057-7
  29. Arcand-Hoy, L. D. and Metcalfe, C. D. : Biomarkers of exposure of brown bullheads (Ameiurus nebulosus) to contaminants in the lower Great Lakes, North America. Environmental Toxicology and Chemistry, 18, 740-749, 1999. https://doi.org/10.1002/etc.5620180421
  30. Flammarion, P. and Garric, J. : Cyprinids EROD activities in low contaminated rivers: A relevant statistical approach to estimate reference levels for EROD biomarker? Chemosphere, 35, 2375-2388, 1997. https://doi.org/10.1016/S0045-6535(97)00299-3
  31. Kosmala, A., Migeon, B., Flammarion, P. and Garric, J. : Impact assessment of a wastewater treatment plant effluent using the fish biomarker ethoxyresorufin- O-deethylase: Field and on-site experiments. Ecotoxicology and Environmental Safety, 41, 19-28, 1998. https://doi.org/10.1006/eesa.1998.1662
  32. Huuskonen, S. and Lindstro-Sepp, P. : Hepatic cytochrome P4501A and other biotransformation activities in perch (Perca fluviatilis): the effects of unbleached pulp mill effluents. Aquatic Toxicology, 31, 27-41, 1995. https://doi.org/10.1016/0166-445X(94)00054-T
  33. Karels, A. E., Soimasuo, M., Lappivaara, J., Leppanen, H., Aaltonen, T., Mellanen, P. and Oikari, A. O. J. : Effects of ECF-bleached kraft mill effluent on reproductive steroids and liver MFO activity in populations of perch and roach. Ecotoxicology, 7, 123-132, 1998. https://doi.org/10.1023/A:1014376825777
  34. Halliwell, B. and Gutteridge, J. M. C. : Free radicals in biology and medicine. Oxford: Oxford University Press, 1999.
  35. Mc Cord, J. M. and Fridovich, I. : Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049-6055, 1969.
  36. Kostromskaia, V. A. : Changes in the intensity of oxidative phosphorylation and catalase activity following irradiation of different types of invertebrates. Radiobiologiia, 12, 437-440, 1972.
  37. Radi, A. A. and Matkovics, B. : Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comparative Biochemistry and Physiology. C, 90, 69-72, 1988. https://doi.org/10.1016/0742-8413(88)90099-0
  38. Winston, G. W. and Di Giulio, R. T. : Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 19, 137-161, 1991. https://doi.org/10.1016/0166-445X(91)90033-6
  39. Valko, M., Morris, H. and Cronin, M. T. : Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161-1208, 2005. https://doi.org/10.2174/0929867053764635
  40. Ding, F., Song, W. H., Guo, J., Gao, M. L. and Hu, W. X. : Oxidative stress and structure-activity relationship in the zebrafish (Danio rerio) under exposure to paclobutrazol. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 44, 44-50, 2009. https://doi.org/10.1080/03601230802519652
  41. Zhang, X., Yang, F., Zhang, X., Xu, Y., Liao, T., Song, S. and Wang, J. : Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquatic Toxicology, 86, 4-11, 2008. https://doi.org/10.1016/j.aquatox.2007.07.002
  42. Sun, Y., Yin, Y., Zhang, J., Yu, H., Wang, X., Wu, J. and Xue, Y. : Hydroxyl radical generation and oxidative stress in Carassius auratus liver, exposed to pyrene. Ecotoxicology and Environmental Safety, 71, 446-453, 2008. https://doi.org/10.1016/j.ecoenv.2007.12.016
  43. Prieto, A. I., Jos, A., Pichardo, S., Moreno, I. and Camean, A. M. : Protective role of vitamin E on the microcystin-induced oxidative stress in tilapia fish (Oreochromis niloticus). Environmental Toxicology and Chemistry, 27, 1152-1159, 2008. https://doi.org/10.1897/07-496.1
  44. Orun, I., Talas, Z. S., Ozdemir, I., Alkan, A. and Erdogan, K. : Antioxidative role of selenium on some tissues of ($Cd^{2+}, Cr^{3+}$)-induced rainbow trout. Ecotoxicology and Environmental Safety, 71, 71-75, 2008. https://doi.org/10.1016/j.ecoenv.2007.07.008
  45. Sturve, J., Almroth, B. C. and Förlin, L. : Oxidative stress in rainbow trout (Oncorhynchus mykiss) exposed to sewage treatment plant effluent. Ecotoxicology and Environmental Safety, 70, 446-452, 2008. https://doi.org/10.1016/j.ecoenv.2007.12.004
  46. Almroth, B. C., Albertsson, E., Sturve, J. and Forlin, L. : Oxidative stress, evident in antioxidant defences and damage products, in rainbow trout caged outside a sewage treatment plant. Ecotoxicology and Environmental Safety, 70, 370-378, 2008. https://doi.org/10.1016/j.ecoenv.2008.01.023
  47. Roberts Jr, M. H., Sved, D. W. and Felton, S. P. : Temporal changes in AHH and SOD activities in feral spot from the Elizabeth River, a polluted subestuary. Marine Environmental Research, 23, 89-101, 1987. https://doi.org/10.1016/0141-1136(87)90040-7
  48. Pang, Q.-F., Ji, Y., Bermudez-Humaran, L. G., Zhou, Q.-M., Hu, G. and Zeng, Y. : Protective effects of a heme oxygenase-1-secreting Lactococcus lactis on mucosal injury induced by hemorrhagic shock in rats. Journal of Surgical Research, 153, 39-45, 2009. https://doi.org/10.1016/j.jss.2008.03.042
  49. Oris, J. T. and Giesy, J. P. : The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology, 6, 133-146, 1985. https://doi.org/10.1016/0166-445X(85)90012-8
  50. Calfee, R. D., Little, E. E., Cleveland, L. and Barron, M. G. : Photoenhanced toxicity of a weathered oil on Ceriodaphnia dubia reproduction. Environmental Science and Technology, 6, 207-212, 1999.
  51. Kang, H. J., Choi, K., Kim, M. and Kim, P. : Endocrine disruption induced by some sulfa drugs and tetracyclines on oryzias latipes. Journal of Environmental Health Sciences, 32, 227-234, 2006.
  52. Kim, E. J. : Study on anti-estrogenic activity of DEHP as an endocrine disruption chemical. Journal of Environmental Health Sciences, 29, 7-15, 2003.
  53. Koo, J., Ryu, J., Chung, K., Lee, C., Park, E.-R. and Park, K. : Studies on the endocrine disruption in wildlife fish. Korean Journal of Environmental Toxicology, 4, 197-204, 2001.
  54. Van Bohemen, C. G., Lambert, J. G. D., Goos, H. J. T. and Van Oordt, P. G. W. J. : Estrone and estradiol participation during exogenous vitellogenesis in the female rainbow trout Salmo gairdneri. General Comparative Endocrinology, 46, 81-92, 1982. https://doi.org/10.1016/0016-6480(82)90166-6
  55. Olsson, P. E., Kling, P., Petterson, C. and Silversand, C. : Interaction of cadmium and oestradiol-17 beta on metallothionein and vitellogenin synthesis in rainbow trout (Oncorhynchus mykiss). The Biochemical Journal, 307, 197-203, 1995. https://doi.org/10.1042/bj3070197
  56. Li, C. R., Lee, S. H., Kim, S. S., Kim, A., Lee, K. W., Lu, M., Kim, H. E., Kwak, I. J., Lee, Y. J., Kim, D. K., Lee, J. S., Kang, S. W., Huh, M. D., Chung, K. H. and Park, J. S. : Environmental estrogenic effects and gonadal development in wild goldfish (Carassius auratus). Environmental Monitoring and Assessment, 150, 397-404, 2008.
  57. Gye, M. C. and Han, M. S. : Vitellogenesis in vertebrates and environmental estrogen. Korean Journal of Environmental Biology, 18, 291-298, 2000.
  58. Shugart, L. R. : DNA damage as a biomarker of Exposure. Ecotoxicology, 9, 329-340, 2000. https://doi.org/10.1023/A:1026513009527
  59. El Adlouni, C., Tremblay, J., Walsh, P., Lagueux, J., Bureau, J., Laliberte, D., Keith, G., Nadeau, D. and Poirier, G. G. : Comparative study of DNA adducts levels in white sucker fish (Catostamus commersoni) from the basin of the St. Lawrence River (Canada). Molecular and Cellular Biochemistry, 148, 133-138, 1995. https://doi.org/10.1007/BF00928150
  60. Kurelec, B., Garg, A., Krca, S., Chacko, M. and Gupta, R. C. : Natural environment surpasses polluted environment in inducing DNA damage in fish. Carcinogenesis, 10, 1337-1339, 1989. https://doi.org/10.1093/carcin/10.7.1337
  61. Van der Oost, R., Van schooten, F. J., Ariese, F., Heida, H., Satumalay, K. and Vermeulen, N. P. E. : Bioaccumulation, biotransformation and DNA-binding of PAHs in feral eel (Anguilla-Anguilla) exposed to polluted sediments - a field survey. Environmental Toxicology and Chemistry, 13, 859-870, 1994. https://doi.org/10.1897/1552-8618(1994)13[859:BBADBO]2.0.CO;2
  62. Van der Oost, R., Van Gastel, L., Worst, D., Hanraads, M., Satumalay, K., van Schooten, F.-J., Heida, H. and Vermeulen, N. P. E. : Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants. Chemosphere, 29, 801-817, 1994. https://doi.org/10.1016/0045-6535(94)90048-5
  63. McFarland, V. A., Inouye, L. S., Lutz, C. H., Jarvis, A. S., Clarke, J. U. and McCant, D. D. : Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Archives of Environmental Contamination and Toxicology, 37, 236-241, 1999. https://doi.org/10.1007/s002449900510
  64. Ericson, G., Liewenborg, B., Lindesjoo, E. N. C. and Balk, L. : DNA adducts in perch (Perca fluviatilis) from a creosote contaminated site in the River Agermanalven, Sweden. Aquatic Toxicology, 45, 181-193, 1999. https://doi.org/10.1016/S0166-445X(98)00100-3
  65. Templeton, D. M. and Cherian, M. G. : Toxicological significance of metallothionein. Methods in Enzymology, 205, 11-24, 1991. https://doi.org/10.1016/0076-6879(91)05079-B
  66. Laurie, A. D. : Quantitation of metallothionein mRNA from the New Zealand common bully (Gobiomorphus cotidianus) and its implications for biomonitoring. New Zealand Journal of Marine and Freshwater Research, 38, 869-877, 2004. https://doi.org/10.1080/00288330.2004.9517286
  67. Van Campenhout, K., Bervoets, L. and Blust, R. : Metallothionein concentrations in natural populations of gudgeon (Gobio gobio): Relationship with metal concentrations in tissues and environment. Environmental Toxicology and Chemistry, 22, 1548-1555, 2003. https://doi.org/10.1002/etc.5620220717
  68. Quiros, L., Pina, B., Solee, M., Blasco, J., Lopez, M. A., Riva, M. C., Barcelo, D. and Raldua, D. : Environmental monitoring by gene expression biomarkers in Barbus graellsii: Laboratory and field studies. Chemosphere, 67, 1144-1154, 2007. https://doi.org/10.1016/j.chemosphere.2006.11.032
  69. Linde-Arias, A. R., Inacio, A. F., Novo, L. A., de Alburquerque, C. and Moreira, J. C. : Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraiba do Sul. Environmental Pollution, 156, 974-979, 2008. https://doi.org/10.1016/j.envpol.2008.05.006
  70. Brammell, B. F., Price, D. J., Birge, W. J. and Elskus, A. A. : Apparent lack of CYP1A response to high PCB body burdens in fish from a chronically contaminated PCB site. Marine Environmental Research, 58, 251-255, 2004. https://doi.org/10.1016/j.marenvres.2004.03.067
  71. Yuan, Z. P., Wirgin, M., Courtenay, S., Ikonomou, M. and Wirgin, I. : Is hepatic cytochrome P4501A1 expression predictive of hepatic burdens of dioxins, furans, and PCBs in Atlantic tomcod from the Hudson River estuary? Aquatic Toxicology, 54, 217-230, 2001. https://doi.org/10.1016/S0166-445X(01)00144-8
  72. Lockhart, W. L. and Metner, D. A. : Applications of hepatic mixed function oxidase enzyme activities to Northern freshwater fish: I. Burbot, Lota lota. Marine Environmental Research, 34, 175-180, 1992. https://doi.org/10.1016/0141-1136(92)90104-T
  73. Masfaraud, J. F., Monod, G. and Devaux, A. : Use of the fish cytochrome P-450-dependent 7-ethylresorufin O-deethylase activity as a biochemical indicator of water pollution. Study of the liver and the kidney of male and female nase (Chondrostoma nasus) from the River Rhone. Science of the Total Environment, 97-98, 729-738, 1990. https://doi.org/10.1016/0048-9697(90)90271-U
  74. Kloeppersams, P. and Swanson, S. : Bioindicator field monitoring: use of fish biochemical parameters at a modern bleached kraft pulp-mill site. Marine Environmental Research, 34, 163-168, 1992. https://doi.org/10.1016/0141-1136(92)90102-R
  75. Kloepper-Sams, P. J. and Benton, E. : Exposure of fish to biologically treated bleached kraft effluent. 2: Induction of hepatic cytochrome P4501A in mountain whitefish (Prosopium williamsoni) and othrer species. Environmental Toxicology and Chemistry, 13, 1483-1496, 1994. https://doi.org/10.1002/etc.5620130911
  76. Payne, J. F. and Penrose, W. R. : Induction of aryl hydrocarbon (benzo[a]pyrene) hydroxylase in fish by petroleum. Bulletin of Environmental Contamination and Toxicology, 14, 112-116, 1975. https://doi.org/10.1007/BF01685608
  77. Vindimian, E., Namour, P., Munoz, J.-F. i., Gril, J.-J., Migeon, B. and Garric, J. : Ethoxyresorufin-o-deethylase induction in fish from a watershed exposed to a non-point source pollution of agricultural origin. Water Research, 27, 449-455, 1993. https://doi.org/10.1016/0043-1354(93)90045-J
  78. Collier, T. K., Anulacion, B. F., Stein, J. E., Goksoyr, A. and Varanasi, U. : A field-evaluation of cytochrome- P4501a as a biomarker of contaminant exposure in 3 species of flatfish. Environmental Toxicology and Chemistry, 14, 143-152, 1995. https://doi.org/10.1002/etc.5620140116
  79. Krca, S., Zaja, R., Calic, V., Terzic, S., Grubesic, M. S., Ahel, M. and Smital, T. : Hepatic biomarker responses to organic contaminants in feral chub (leuciscus cephalus)-laboratory characterization and field study in the Sava River, Croatia. Environmental Toxicology and Chemistry, 26, 2620-2633, 2007. https://doi.org/10.1897/07-227.1
  80. Payne, J. F., Mathieu, A., Melvin, W. and Fancey, L. L. : Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Marine Pollution Bulletin, 32, 225-231, 1996. https://doi.org/10.1016/0025-326X(95)00112-Z
  81. Gallagher, E. P. and Di Giulio, R. T. : Effects of complex waste mixtures on hepatic monooxygenase activities in brown bullheads (Ictalurus nebulosus). Environmental Pollution, 62, 113-128, 1989. https://doi.org/10.1016/0269-7491(89)90182-6
  82. Schmitt, C. J., Hinck, J. E., Blazer, V. S., Denslow, N. D., Dethloff, G. M., Bartish, T. M., Coyle, J. J. and Tillitt, D. E. : Environmental contaminants and biomarker responses in fish from the Rio Grande and its US tributaries: Spatial and temporal trends. Science of the Total Environment, 350, 161-193, 2005. https://doi.org/10.1016/j.scitotenv.2005.01.038
  83. Otto, D. M. and Moon, T. W. : Phase I and II enzymes and antioxidant responses in different tissues of brown bullheads from relatively polluted and non-polluted systems. Archives of Environmental Contamination and Toxicology, 31, 141-147, 1996. https://doi.org/10.1007/BF00203918
  84. Van der Oost, R., Goksoyr, A., Celander, M., Heida, H. and Vermeulen, N. P. E. : Biomonitoring of aquatic pollution with feral eel (Anguilla anguilla) II. Biomarkers: pollution-induced biochemical responses. Aquatic Toxicology, 36, 189-222, 1996. https://doi.org/10.1016/S0166-445X(96)00802-8
  85. Jedamskigrymlas, J., Kammann, U., Tempelmann, A., Karbe, L. and Siebers, D. : Biochemical responses and environmental contaminants in breams (Abramis brama L.) caught in the river elbe. Ecotoxicology and Environmental Safety, 31, 49-56, 1995. https://doi.org/10.1006/eesa.1995.1042
  86. Tuvikene, A., Huuskonen, S., Koponen, K., Ritola, O., Mauer, U. and Lindstrom-Seppa, P. : Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish. Environmental Health Perspectives, 10, 745-752, 1999.
  87. Flammarion, P. and Garric, J. : A statistical approach for classifying the extent of EROD induction of fish sampled in clean and contaminated waters. Water Research, 33, 2683-2689, 1999. https://doi.org/10.1016/S0043-1354(98)00492-8
  88. Bucher, F., Hofer, R. and Salvenmoser, W. : Effects of treated paper mill effluents on hepatic morphology in male bullhead (Cottus gobio L.) Archives of Environmental Contamination and Toxicology, 23, 410-419, 1992.
  89. Sanchez, W., Ait-Aissa, S., Palluel, O., Ditche, J. M. and Porcher, J. M. : Preliminary investigation of multi-biomarker responses in three-spined stickleback (Gasterosteus aculeatus L.) sampled in contaminated streams. Ecotoxicology, 16, 279-287, 2007. https://doi.org/10.1007/s10646-006-0131-z
  90. Bucher, F., Hofer, R., Krumschnabel, G. and Doblander, C. : Disturbances in the prooxidant - antioxidant balance in the liver of bullhead (Cottus gobio L.) exposed to treated paper mill effluents. Chemosphere, 27, 1329-1338, 1993. https://doi.org/10.1016/0045-6535(93)90227-V
  91. Lenartova, V., Holovska, K., Pedrajas, J. R., Lara, E. M., Peinado, J., Barea, J. L., Rosival, I. and Kosuth, P. : Antioxidant and detoxifying fish enzymes as biomarkers of river pollution. Biomarkers, 2, 247-252, 1997. https://doi.org/10.1080/135475097231625
  92. Burki, R., Vermeirssen, E. L. M., Korner, O., Joris, C., Burkhardt-Holm, P. and Segner, H. : Assessment of estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland river: Integrated analysis of passive samplers, wild and caged fish, and vitellogenin mRNA and protein. Environmental Toxicology and Chemistry, 25, 2077-2086, 2006. https://doi.org/10.1897/05-545R.1
  93. Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M. and Flick, R. W. : Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104, 8897-8901, 2007. https://doi.org/10.1073/pnas.0609568104
  94. Flammarion, P., Brion, F., Babut, M., Garric, J., Migeon, B., Noury, P., Thybaud, E., Tyler, C. R., Palazzi, X. and Tyler, C. R. : Induction of fish vitellogenin and alterations in testicular structure: Preliminary results of estrogenic effects in chub (Leuciscus cephalus). Ecotoxicology, 9, 127-135, 2000. https://doi.org/10.1023/A:1008984616206
  95. Linde-Arias, A. R., Inacio, A. F., de Alburquerque, C., Freire, M. M. and Moreira, J. C. : Biomarkers in an invasive fish species, Oreochromis niloticus, to assess the effects of pollution in a highly degraded Brazilian River. Science of the Total Environment, 399, 186-192, 2008. https://doi.org/10.1016/j.scitotenv.2008.03.028
  96. Ferrando, S., Maisano, M., Parrino, V., Ferrando, T., Girosi, L. and Tagliafierro, G. : Gut morphology and metallothionein immunoreactivity in Liza aurata from different heavy metal polluted environments. Italian Journal of Zoology, 73, 7-14, 2006. https://doi.org/10.1080/11250000500502228