• Title/Summary/Keyword: metabolic enzyme

Search Result 453, Processing Time 0.024 seconds

Treatment and management of patients with inherited metabolic diseases (유전성 대사질환의 치료 및 관리)

  • Lee, Jin-Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.11
    • /
    • pp.1152-1157
    • /
    • 2006
  • Inherited metabolic disease is rare disorders that show symptoms mainly in pediatric age and early treatment is important for preventing complications of the disease. Recent development in molecular and biochemical techniques help clinicians with proper diagnosis of patients, however, many of the disease still remain lack of effective therapeutic strategies. Better understanding on biochemical and molecular basis of pathogenesis of the disease combined with advanced medical care would provide new sight on the disease that can also improve the quality of life and long-term prognosis of patients. Traditionally, there are several modalities in the treatment of metabolic diseases depend on the biochemical basis of the disease such as diet restriction, removing or blocking the production of toxic metabolites, and stimulating residual enzyme activity. The inherited metabolic disease is not familiar for many clinicians because the diagnosis is troublesome, treatment is complicated and prognosis may not as good as expected in other diseases. Recently, new therapeutic regimens have been introduced that can significantly improve the medical care of patients with metabolic disease. Enzyme replacement therapy has showed promising efficacy for lysosomal storage disease, bone marrow transplantation is effective in some disease and gene therapy has been trying for different diseases. The new trials for treatment of the disease will give us promising insight on the disease and most clinicians should have more interest in medical progress of the metabolic disease.

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

  • Bae, Soo-Jung;Park, Young-Hwan;Bae, Hyeun-Jong;Jeon, Junhyun;Bae, Hanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1157-1162
    • /
    • 2017
  • The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

Metabolic Flux Distribution in a Metabolically Engineered Escherichia coli Strain Producing Succinic Acid

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.496-501
    • /
    • 2000
  • Escherichia cole NZN111, which is known as a pfl ldhA double mutant strin, was metabolically engineered to produce succinic acid by overexpressing malic enzyme into the E. coli controlled by a trc promoter. Fermentation studies were carried out in a LB medium by first growing cells aerobically to an $OD_{600}$ of 5. At this point, 0.01 mM IPTG was added to induce the overexpression of malic enzyme and the agitation speed was gradually lowered. When the culture $OD_{600}$ reached 11, a complete anaerobic condition was achieved by flushing with a $CO_3-H_2$ gas mixture. When NZN111(pTrcML) was cultured at $37^{\circ}C$, the final succinic acid concentration of 2.8 g/l could be obtained after 30 h of anaerobic cultivation. The fermentation results were analyzed by the calculation of metabolic fluxes. Metaolic flux analysis showed that about 85% of phosphoenolpyruvate (PEP) was converted to pyruvate, and further converted to malic acid by malic enzyme.

  • PDF

Computational identification of significantly regulated metabolic reactions by integration of data on enzyme activity and gene expression

  • Nam, Ho-Jung;Ryu, Tae-Woo;Lee, Ki-Young;Kim, Sang-Woo;Lee, Do-Heon
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.609-614
    • /
    • 2008
  • The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.

Enhanced Production of Succinic Acid by Metabolically Engineered Escherichia coli with Amplified Activities of Malic Enzyme and Fumarase

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.252-255
    • /
    • 2004
  • A pfl ldhA double mutant Escherichia coli strain NZN 111 was used to produce succinic acid by overexpressing the E. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, the fumB gene encoding the anaerobic fumarase of E. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducible trc promoter. From the batch culture of recombinant E. coli NZN 111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.

A Case of Clinical Improvement after Enzyme Replacement Therapy in Pompe Disease (효소 보충 치료로 호전을 보인 Pompe병 1례)

  • Jeon, You Hoon;Eun, Baik Lin;Lee, Dong Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • Pompe disease is a genetic disorder caused by a deficiency of acid ${\alpha}$-glucosidase (GAA). This enzyme defect results in lysosomal glycogen accumulation in multiple tissues and cell types, with cardiac, skeletal, and smooth muscle cells the most seriously affected. Infantile-onset Pompe disease is uniformly lethal. Affected infants present in the first few months of life with hypotonia, generalized muscle weakness, and a hypertrophic cardiomyopathy, followed by death from cardiorespiratory failure or respiratory infection, usually by 1 year of age. Late-onset forms is characterized by a lack of severe cardiac involvement and a less severe short-term prognosis. Enzyme replacement therapy for Pompe disease is intended to address directly the underlying metabolic defect via intravenous infusions of recombinant human GAA to provide the missing enzyme. We experienced one case of Pompe disease in 3-years old boy that has improved his exercise ability and cardiac function after GAA enzyme replacement therapy.

  • PDF

In Silico Analysis of Lactic Acid Secretion Metabolism through the Top-down Approach: Effect of Grouping in Enzyme kinetics

  • Jin, Jong-Hwa;Lee, Jin-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.462-469
    • /
    • 2005
  • A top-down approach is known to be a useful and effective technique for the design and analysis of metabolic systems. In this Study, we have constructed a grouped metabolic network for Lactococcus lactis under aerobic conditions using grouped enzyme kinetics. To test the usefulness of grouping work, a non-grouped system and grouped systems were compared quantitatively with each other. Here, grouped Systems were designed as two groups according to the extent of grouping. The overall simulated flux values in grouped and non-grouped models had pretty similar distribution trends, but the details on flux ratio at the pyruvate branch point showed a little difference. This result indicates that our grouping technique can be used as a good model for complicated metabolic networks, however, for detailed analysis of metabolic network, a more robust mechanism Should be considered. In addition to the data for the pyruvate branch point analysis, Some major flux control coefficients were obtained in this research.

Degradation of Polyvinyl Alcohol by Brevibacillus laterosporus: metabolic Pathway of Polyvinyl Alcohol to Acetate

  • Lim, Joong-Gyu;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.928-933
    • /
    • 2001
  • Approximately 0.1 mg/ml of polyvinyl alcohol (PVA) was degraded by the growing cell, Brevibacillus laterospours, for 30 h, and 0.2 mg/ml of PVA was degraded by the cell-free extract that was isolated from Brevibacillus laterosporus. Approximately $0.29{\mu}g$/ml of acetic acid was produced from PVA by using the cell-free extract as a catalyst for 40 min. $V_{max}\;and\;K_m$ value of purified PAV-degradation enzyme was 3.75g/l and 2.75 g/l/min in reaction with EDTA and 3.99 g/l and 2.98 g/l/min in reaction without EDTA, respectively. Molecular weight of the purified enzyme determined by SDS-PAGE was 63,000 Da. Alcohol dehydrogenase and aldehyde dehydrogenase activities were qualitatively detected on a native acrylamide gel by an active staining method, indicating the existence of the metabolic pathway to use PVA as a substrate.

  • PDF

Genome-Wide Association Study of Liver Enzymes in Korean Children

  • Park, Tae-Joon;Hwang, Joo-Yeon;Go, Min Jin;Lee, Hye-Ja;Jang, Han Byul;Choi, Youngshim;Kang, Jae Heon;Park, Kyung Hee;Choi, Min-Gyu;Song, Jihyun;Kim, Bong-Jo;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.149-154
    • /
    • 2013
  • Liver enzyme elevations, as an indicator of liver function, are widely associated with metabolic diseases. Genome-wide population-based association studies have identified a genetic susceptibility to liver enzyme elevations and their related traits; however, the genetic architecture in childhood remains largely unknown. We performed a genome-wide association study to identify new genetic loci for liver enzyme levels in a Korean childhood cohort (n = 484). We observed three novel loci (rs4949718, rs80311637, and rs596406) that were multiply associated with elevated levels of alanine transaminase and aspartate transaminase. Although there are some limitations, including genetic power, additional replication and functional characterization will support the clarity on the genetic contribution that the ST6GALNAC3, ADAMTS9, and CELF2 genes have in childhood liver function.

Studies of the Cordyceps militaris Extract Administration on the Metabolic Enzyme Activities in Hypercholesterolemia (동충하초 엑스의 고콜레스테롤혈증 대사효소 활성 변동에 관한 효과)

  • Kim, Han-Soo;Kim, Min-A;Jang, Seong-Ho;Kang, Jin-Soon;Lee, Won-Ki;Ryu, Jae-Young
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1213-1219
    • /
    • 2012
  • The objective of this study was to investigate the effects of the feeding Cordyceps militaris extract on the improvement of the free fatty acid, lipid peroxide, creatinine and enzyme (creatine phosphokinase; CPK, lactate dehydrogenase; LDH, alkaline phosphatase; ALP, lecithin cholesterol acyltransferase; LCAT) activities in the sera of dietary hypercholesterolemic rats (SD strain, male) fed the experimental diets for 5 weeks. Concentrations of free fatty acid, lipid peroxide and CPK, LDH, ALP activities in sera were fairly reduced in the Cordyceps militaris extract administration group (CHE) than in the hypercholesterolemic diet group (CHD). However, no significance was found in the effect of an creatinine concentration among the groups. The LCAT activity in serum was increased in the Cordyceps militaris extract administration (CHE) than in the hypercholesterolemic diet group (CHD). From these results, Cordyceps militaris extracts were effective on the improvement of the lipid components and metabolic enzyme activities in sera of dietary hypercholesterolemic rats.