참고문헌
- Card, J. P., Naimo M, and Ziminsky, W. (1998), Run-to-tun process control of a plasma etch process with neural network modeling, Quality and Reliability Engineering International, 14, 247-260. https://doi.org/10.1002/(SICI)1099-1638(199807/08)14:4<247::AID-QRE188>3.0.CO;2-V
- Choi, Sang Wook and Lee, In-Beum (2005), Multiblock PLS-based localized process diagnosis, Journal of Process Control, 15, 295-306. https://doi.org/10.1016/j.jprocont.2004.06.010
- Combay, E. (2000), Sequential change-point detection with likelihood ratios, Statistics and Probability Letters, 49, 195-204. https://doi.org/10.1016/S0167-7152(00)00048-1
- Dorizzi, B., Pellieux, F., Jacquet, F., Czernichow, T., and Munoz, A. (1996), Variable selection using generalized RBF networks : Application to the forecast of the french T-bonds, In Proceeding of IEEE-IMACS, Lille, France, 122-127.
- Gunn, S. R. (1998), Supprot vector machines for classification and regression, ISIS Technical Report.
- Han, D. Y. and Park, K. J. (2006), Fuzzy Contorl Algorithm for the Compressor and the Electronic Expansion Valve of a Multi-type Air-conditioning System using Multiple Input Variable, SAREK Journal of Air-Conditioning and Refrigeration, 18, 163-171.
- Hawkins, D. M. (1977), Testing a sequence of observation for a shift in location, Journal of American Statistical Association, 72, 180-186. https://doi.org/10.2307/2286934
- Hawkins, D. M., Qiu P., and Kang, C. W. (2003), The changepoint model for statistical process control, Journal of Quality Technology, 35, 355-366.
- Hawkins, D. M. and Zamba, K. D. (2005), A change-point model for a shift in variance, Journal of Quality Technology, 37, 21-31.
- Hastie, T., Tibshirani, T., and Friedman, J. (2001), The Element of Statistical Learning, Springer, New York.
- Hastie, T., Tibshirani, T., and Friedman, J. (2001), The Element of Statistical Learning, Springer, New York.
- Ramsay, J. O. and Silverman, B. W. (2005), Functional data analysis, Springer.
- Ruck, D. W., Rogers, S. K., and Kabrisky, M. (1990), Feature selection using a multilayer perceptron, Journal of Neural Network Computing, 2, 40-48.
- Scott, D. Grimshaw and Scott, D. Shellman (1998), Real-time process monitoring for changing inputs, Technometrics, 40, 283-296. https://doi.org/10.2307/1270529
- Sherry, F. Lee and Costas, J. Spanos (1995), Prediction of wafer state after plasma processing using real-time tool data, IEEE Transaction on Semiconductor Manufacturing, 8, 252-261. https://doi.org/10.1109/66.400999
- Szetsen, Lee and Yu-Chung, Tien (2006), In situ real-time monitoring of plasma process chamber component qualities and predictive controlling of wafer yields, IEEE Transaction on Semiconductor Manufacturing, 19, 432-436. https://doi.org/10.1109/TSM.2006.883595
- Undey, C., Ertunc, S., and Cinar, A. (2003), Online batch/fed-batch process performance monitoring quality prediction, and variable-contribution analysis for diagnosis, Industrial and Engineering Chemistry Research, 42, 4645-4658. https://doi.org/10.1021/ie0208218
- West, D., Dellana, S., and Jarrett, J. (2002), Transfer Function modeling of processes with dynamic inputs, Journal of Quality Technology, 34, 315-326.
- Westerhuis, J. A., Gurden, S. P., and Smilde, A. K. (2000), Generalized contribution plots in multivariate statistical process monitoring, Chemometrics and Intelligent Laboratory Systems, 51, 95-114. https://doi.org/10.1016/S0169-7439(00)00062-9
- Zamba, K. D. and Hawkins, D. M. (2006), A multivariate change-point model for statistical process control, Technometrics, 48, 539-549. https://doi.org/10.1198/004017006000000291