DOI QR코드

DOI QR Code

Small Group Velocity of Line Defect in Two-dimensional Photonic Crystal

2차원 광결정 선결함의 낮은 군속도

  • 이명래 (순천향대학교 전자물리학과) ;
  • 김경래 (순천향대학교 전자물리학과) ;
  • 신원진 (순천향대학교 전자물리학과) ;
  • 김창교 (순천향대학교 전자정보공학과) ;
  • 홍진수 (순천향대학교 전자물리학과)
  • Published : 2010.02.01

Abstract

Photonic crystal is dielectric materials or a set of different dielectric materials with periodic structure. Line defect is obtained by leaving out a row of rods along the $\Gamma$-X direction. We showed the change of group velocity in waveguide mode and found resultant small group velocity. Characteristics of the small group velocity were described by electric field distribution. Investigating the phase shift, it is confirmed if small group velocity is positive or negative.

Keywords

References

  1. E. Yablonovitch, “Photonic crystals", Journal of Modern Optics, Vol. 41, No. 2, p. 173, 1994. https://doi.org/10.1080/09500349414550261
  2. J. Semmel, L. Nahle, S. Hofling, and A. Forchel, "Edge emitting quantum cascade microlasers on InP with deeply one-dimensional photonic crystals", Appl. Phys. Lett., Vol. 91, p. 071104, 2007. https://doi.org/10.1063/1.2771054
  3. John D. Joannopoulos, "Photonic Crystals", Prinston Press, 1995.
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Phys. Rev. Lett., Vol. 58, No. 20, p. 2059, 1987. https://doi.org/10.1103/PhysRevLett.58.2059
  5. C. O. Cho, Y. G. Roh, Y. S. Park, H. S. Jeon, B. S. Lee, H. W. Kim, and Y. H. Choe, "Photonic crystal slab waveguides fabricated by the combination of holography and photolithography", Jap. J. App. Phys., Vol. 43, No. 4A, p. 1384, 2004. https://doi.org/10.1143/JJAP.43.1384
  6. H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 ${\mu}m$", Appl. Phys. Lett., Vol. 81, No. 24, p. 4502, 2002. https://doi.org/10.1063/1.1524291
  7. F. Wua, T. Wu, Z. Liu, and Y. Liu, “Effect of point defect geometry on localized defect modes in two-dimensional photonic crystals”, Phys. Lett. A, Vol. 349, p. 285, 2006. https://doi.org/10.1016/j.physleta.2005.09.003
  8. C. S. Kee, J. E. Lee, H. Y. Park, and K. J. Chang, "Defect modes in a two-dimensional square lattice of rods", Phys. Rev. B, Vol. 58, No. 6, p. 7908, 1998. https://doi.org/10.1103/PhysRevE.58.7908
  9. J. C. Knight, J. Broeng, T. A. Birks, P. St. and J. Russell, "Photonic band gap guidance in optical fibers", Science, Vol. 282, p. 1476, 1998. https://doi.org/10.1126/science.282.5393.1476
  10. H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 ${\mu}m$", Appl. Phys. Lett., Vol. 81, No. 24, p. 4502, 2002. https://doi.org/10.1063/1.1524291
  11. L. Shen and S. He, "Analysis for the convergence problem of the plane-wave expansion method for photonic crystals", J. Opt. Soc. Am. A, Vol. 19, Issue 5, p. 1021, 2002. https://doi.org/10.1364/JOSAA.19.001021
  12. Risto M. Nieminen, "Supercell Methods for Defect Calculations", Springer Berlin, Heidelberg, p. 22, 2006.
  13. S. H. G. Teo, A. Q. Lui, and J. Singh, "Rod type photonic crystal optical line defect waveguides with optical modulations", Appl. Phys. A, Vol. 89, p. 417, 2007. https://doi.org/10.1007/s00339-007-4122-6
  14. Samuel S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems", Phys. Rev. B, Vol. 59, p. 4091, 1999-II. https://doi.org/10.1103/PhysRevB.59.4091
  15. K. Sakoda, "Optical Properties of Photonic Crystals", Springer-Verlag, Berlin, p. 32, 2001.