참고문헌
- D. Bessis, The dual braid monoid, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 5, 647-683.
- D. Bessis and R. Corran, Non-crossing partitions of type (e, e, r), Adv. Math. 202 (2006), no. 1, 1-49.
- D. Bessis, F. Digne, and J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2002), no. 2, 287-309.
- J. S. Birman, K. H. Ko, and S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998), no. 2, 322-353.
-
T. Brady, A partial order on the symmetric group and new K(
${\pi}$ , 1)'s for the braid groups, Adv. Math. 161 (2001), no. 1, 20-40. - P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. (3) 79 (1999), no. 3, 569-604.
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25.
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335-388. https://doi.org/10.2307/1971403
- L. Kauffman, Knots and Physics, World Scientific, Singapore, 1993.
- W. B. R. Lickorish, Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290 (1991), no. 4, 657-670. https://doi.org/10.1007/BF01459265
- J. McCammond, Noncrossing partitions in surprising locations, Amer. Math. Monthly 113 (2006), no. 7, 598-610. https://doi.org/10.2307/27642003
- V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, de Gruyter Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin, 1994.
- M. G. Zinno, A Temperley-Lieb basis coming from the braid group, J. Knot Theory Ramifications 11 (2002), no. 4, 575-599. https://doi.org/10.1142/S0218216502001846
피인용 문헌
- Noncrossing partitions, fully commutative elements and bases of the Temperley–Lieb algebra vol.25, pp.06, 2016, https://doi.org/10.1142/S0218216516500358
- Dual braid monoids, Mikado braids and positivity in Hecke algebras vol.285, pp.1-2, 2017, https://doi.org/10.1007/s00209-016-1704-z