DOI QR코드

DOI QR Code

WEAK α-SKEW ARMENDARIZ RINGS

  • Zhang, Cuiping (DEPARTMENT OF MATHEMATICS NORTHWEST NORMAL UNIVERSITY, DEPARTMENT OF MATHEMATICS SOUTHEAST UNIVERSITY) ;
  • Chen, Jianlong (DEPARTMENT OF MATHEMATICS SOUTHEAST UNIVERSITY)
  • 발행 : 2010.05.01

초록

For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.

키워드

참고문헌

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
  2. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  3. J. L. Chen and Y. Q. Zhou, Extensions of injectivity and coherent rings, Comm. Algebra 34 (2006), no. 1, 275-288. https://doi.org/10.1080/00927870500346263
  4. C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. https://doi.org/10.1081/AGB-120016752
  5. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  6. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  7. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  8. Z. K. Liu and R. Y. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616. https://doi.org/10.1080/00927870600651398
  9. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14

피인용 문헌

  1. On Rings Having McCoy-Like Conditions vol.40, pp.4, 2012, https://doi.org/10.1080/00927872.2010.548842