DOI QR코드

DOI QR Code

Friction of a Brownian Particle in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2010.04.20

Abstract

In this work, equilibrium molecular dynamics (MD) simulations in a microcanonical ensemble are performed to evaluate the friction coefficient of a Brownian particle (BP) in a Lennard-Jones (LJ) solvent. The friction coefficients are determined from the time dependent friction coefficients and the momentum autocorrelation functions of the BP with its infinite mass at various ratios of LJ size parameters of the BP and solvent, ${\sigma}_B/{\sigma}_s$. The determination of the friction coefficients from the decay rates of the momentum autocorrelation functions and from the slopes of the time dependent friction coefficients is difficult due to the fast decay rates of the correlation functions in the momentum-conserved MD simulation and due to the scaling of the slope as 1/N (N: the number of the solvent particle), respectively. On the other hand, the friction coefficient can be determined correctly from the time dependent friction coefficient by measuring the extrapolation of its long time decay to t=0 and also from the decay rate of the momentum autocorrelation function, which is obtained by time integration of the time dependent friction coefficient. It is found that while the friction coefficient increases quadratically with the ratio of ${\sigma}_B/{\sigma}_s$ for all ${\sigma}_B$, for a given ${\sigma}_s$ the friction coefficient increases linearly with ${\sigma}_B$.

Keywords

References

  1. Kubo, R. J. Phys. Soc. Jpn. 1957, 12, 570. https://doi.org/10.1143/JPSJ.12.570
  2. Kubo, R. Rep. Prog. Phys. 1966, 29, 255 https://doi.org/10.1088/0034-4885/29/1/306
  3. Kubo, R. In Many-Body Problems, The Fluctuation Dissipation Theorem; Parry, W. E. et al. Eds.; Benjamin: New York, 1969; p 235.
  4. Brey, J. J.; Gomez Ordonez, J. J. Chem. Phys. 1982, 76, 3260. https://doi.org/10.1063/1.443319
  5. Espanol, P.; Zuniga, I. J. Chem. Phys. 1993, 98, 574. https://doi.org/10.1063/1.464599
  6. Ould-Kaddour, F.; Levesque, D. J. Chem. Phys. 2003, 118, 7888. https://doi.org/10.1063/1.1563593
  7. Lee, S. H.; Kapral, R. J. Chem. Phys. 2004, 121, 11163. https://doi.org/10.1063/1.1815291
  8. Weeks, J. D.; Chandler, D.; Andersen, H. C. J. Chem. Phys. 1971,54, 5237. https://doi.org/10.1063/1.1674820
  9. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637. https://doi.org/10.1063/1.442716
  10. Hansen, P.; McDonald, I. R. Theory of Simple Liquids; Academic: New York, 1986.
  11. Lebowitz, J. L.; Rubin, E. Phys. Rev. 1963, 131, 2381. https://doi.org/10.1103/PhysRev.131.2381
  12. Resibois, P.; Davis, H. T. Physica 1964, 30, 1077. https://doi.org/10.1016/0031-8914(64)90099-0
  13. Lebowitz, J. L.; Resibois, P. Phys. Rev. 1965, 139, 1101. https://doi.org/10.1103/PhysRev.139.A1101
  14. Mazur, P.; Oppenheim, I. Physica 1970, 50, 241. https://doi.org/10.1016/0031-8914(70)90005-4
  15. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. J. Comp. Phys. 1977,23, 327. https://doi.org/10.1016/0021-9991(77)90098-5

Cited by

  1. Test of Stokes-Einstein Formula for a Tracer in a Large System by Molecular Dynamics Simulation vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.735
  2. Friction between Two Brownian Particles in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study vol.31, pp.8, 2010, https://doi.org/10.5012/bkcs.2010.31.8.2402
  3. Molecular dynamics simulation study of friction and diffusion of a tracer in a Lennard-Jones solvent vol.127, pp.5, 2010, https://doi.org/10.1007/s00214-010-0757-z
  4. Test of Stokes-Einstein Formula for a Tracer in a Mesoscopic Solvent by Molecular Dynamics Simulation vol.34, pp.2, 2010, https://doi.org/10.5012/bkcs.2013.34.2.574