DOI QR코드

DOI QR Code

Gas Phase Oxidation of Toluene and Ethyl Acetate over Proton and Cobalt Exchanged ZSM-5 Nano Catalysts- Experimental Study and ANN Modeling

  • Hosseini, Seyed Ali (Department of Applied Chemistry, Faculty of Chemistry, University of Tariz) ;
  • Niaei, Aligholi (Department of Applied Chemistry, Faculty of Chemistry, University of Tariz) ;
  • Salari, Dariush (Department of Applied Chemistry, Faculty of Chemistry, University of Tariz) ;
  • Jodaei, Azadeh (Department of Applied Chemistry, Faculty of Chemistry, University of Tariz)
  • Published : 2010.04.20

Abstract

Activities of nanostructure HZSM-5 and Co-ZSM-5 catalysts (with different Co-loading) for catalytic conversion of ethyl acetate and toluene were studied. The catalysts were prepared by wet impregnation method and were characterized by XRD, BET, SEM, TEM and ICP-AES techniques. Catalytic studies were carried out inside a U-shaped fixed bed reactor under atmospheric pressure and different temperatures. Toluene showed lower reactivity than ethyl acetate for conversion on Co-ZSM-5 catalysts. The effect of Co loading on conversion was prominent at temperatures below $400^{\circ}C$ and $450^{\circ}C$ for ethyl acetate and toluene respectively. In a binary mixture of organic compounds, toluene and ethyl acetate showed an inhibition and promotional behaviors respectively, in which the conversion of toluene was decreased at temperatures above $350^{\circ}C$. Inhibition effect of water vapor was negligible at temperatures above $400^{\circ}C$. An artificial neural networks model was developed to predict the conversion efficiency of ethyl acetate on Co-ZSM-5 catalysts based on experimental data. Predicted results showed a good agreement with experimental results. ANN modeling predicted the order of studied variable effects on ethyl acetate conversion, which was as follows: reaction temperature (50%) > ethyl acetate inlet concentration (25.085%) > content of Co loading (24.915%).

Keywords

References

  1. Mukhopadhyay, N.; Moretti, E. AIChE, New York, 1993, 20.
  2. Yang, Y.; Xu, X.; Sun, K. Catal. Commun. 2006 7, 756. https://doi.org/10.1016/j.catcom.2005.09.014
  3. Lin, P. Y.; Skoglundh, M.; Löwendahl, L.; Otterstédt, J. E.; Dahl,L.; Jansson, K.; Nygren, M. Appl. Catal. B 1995, 6, 237. https://doi.org/10.1016/0926-3373(95)00008-9
  4. Law, T.; Chao, C.; Chan,Y.; Law, A. Atmos. Environ. 2003, 37,5433. https://doi.org/10.1016/j.atmosenv.2003.09.016
  5. Li, W.; Zhuang, M.; Hua, J. Catal. Today 2004, 93, 205. https://doi.org/10.1016/j.cattod.2004.06.042
  6. Wang, C. H. Chemosphere 2004, 55, 11. https://doi.org/10.1016/j.chemosphere.2003.10.036
  7. Yang, Y.; Xu, X.; Sun, K. J. Hazard. Mater. B 2007, 139, 140. https://doi.org/10.1016/j.jhazmat.2006.06.010
  8. Headon, K.; Zhang, D. K. Ind. Eng. Chem. Res. 1997, 36, 4595. https://doi.org/10.1021/ie9700775
  9. Corma, A.; Navarro, M. T. Stud. Surf. Sci. Catal. 2002, 142, 487. https://doi.org/10.1016/S0167-2991(02)80065-9
  10. Chatterjee, S.; Greene, H. L.; Park, Y. J. J. Catal. 1992, 138, 179. https://doi.org/10.1016/0021-9517(92)90016-B
  11. Ribeiro, M. F.; Silva, J. M.; Brimaud, S.; Magnoux, P.; Murphy, D.M. Appl. Catal. B 2007, 70, 384. https://doi.org/10.1016/j.apcatb.2006.01.027
  12. Kharas, K.; Liu, D.; Robota, H. Catal. Today 1995, 26, 129. https://doi.org/10.1016/0920-5861(95)00139-7
  13. Nicolaides, C.; Sincadu, N.; Scurrell, M. S. Stud. Surf. Sci. Catal.2001, 136, 333. https://doi.org/10.1016/S0167-2991(01)80325-6
  14. Liu, C.; Deng, Y.; Pan, Y.; Gu, Y. J. Mol. Catal. A 2004, 215, 195. https://doi.org/10.1016/j.molcata.2004.02.001
  15. Yamanaka, H.; Hamada, R.; Nibuta, H. J. Mol. Catal. A 2002, 178,89. https://doi.org/10.1016/S1381-1169(01)00279-5
  16. Wong, C.; Abdullah, A.; Bhatia, S. J. Hazard. Mater. 2008, 157,480 https://doi.org/10.1016/j.jhazmat.2008.01.012
  17. Stocker, M. Micropor. Mesopor. Mater. 2005, 82, 257. https://doi.org/10.1016/j.micromeso.2005.01.039
  18. Tsou, J.; Magnoux, P.; Guisnet, M.; Órfão, J.; Figueiredo, J. L.Appl. Catal. B 2005, 57, 117. https://doi.org/10.1016/j.apcatb.2004.10.013
  19. Burgos, N.; Paulis, M.; Mirari Antxustegi, M.; Montes, M. Appl. Catal. B 2002, 38, 251. https://doi.org/10.1016/S0926-3373(01)00294-6
  20. Papaefthimiou, P.; Ioannides, T.; Verykios, X. E. Appl. Catal. B1998, 15, 75. https://doi.org/10.1016/S0926-3373(97)00038-6
  21. Fonseca, R.; Ortiz, J. I.; Ayastui, J. L.; Ortiz, M.; Velasco, J. Appl. Catal. B 2003, 45, 13. https://doi.org/10.1016/S0926-3373(03)00106-1
  22. Salari, D.; Niaei, A.; Khataee, A.; Zarei, M. J. Electroanal. Chem.2009, 629, 117. https://doi.org/10.1016/j.jelechem.2009.02.002
  23. Hoefnagel, A. J.; Bekkum, H. V. Catal. Lett. 2003, 85, 7. https://doi.org/10.1023/A:1022152304209
  24. Kirumakki, S. R.; Nagaraju, N.; Cari, K. J. Catal. 2004, 221, 549. https://doi.org/10.1016/j.jcat.2003.09.013
  25. Abdullah, A. Z.; Abuu Bakar, M. Z.; Bhatia, S. Ind. Eng. Chem. Rev. 2003, 42, 6059. https://doi.org/10.1021/ie020989t
  26. Atwood, G. A.; Greene, H. L.; Chintawar, P.; Rachapudi, R.; Ramachandran,B.; Vogel, C. A. Appl. Catal. B 1998, 18, 51. https://doi.org/10.1016/S0926-3373(98)00023-X

Cited by

  1. Atomic spectrometry update. Industrial analysis: metals, chemicals and advanced materials vol.26, pp.12, 2011, https://doi.org/10.1039/c1ja90047a
  2. Oxidation of ethyl acetate by a high performance nanostructure (Ni, Mn)-Ag/ZSM-5 bimetallic catalysts and development of an artificial neural networks predictive modeling vol.46, pp.1, 2011, https://doi.org/10.1080/10934529.2011.526899
  3. Catalytic Transformation of Bio-oil to Benzaldehyde and Benzoic Acid: An Approach for the Production of High-value Aromatic Bio-chemicals vol.6, pp.2, 2010, https://doi.org/10.2174/2213346106666190830114619