• Title/Summary/Keyword: ANN modeling

Search Result 142, Processing Time 0.029 seconds

Artificial neural network modeling to predict the flexural behavior of RC beams retrofitted with CFRP modified with carbon nanotubes

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub;Elmahmoud, Weam
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.209-224
    • /
    • 2022
  • In this paper, the artificial neural network (ANN) is employed to predict the flexural behavior of reinforced concrete (RC) beams retrofitted with carbon fiber/epoxy composites modified by carbon nanotubes (CNTs). Multiple techniques are used to improve the accuracy of the ANN prediction, as the data represents a multivalued function. These techniques include static ANN modeling, ANN modeling with load history, and ANN modeling with double load history. The developed ANN models are used to predict the load-displacement profiles of beams retrofitted with either CFRP or CNTs modified CFRP, flexural capacity, and maximum displacement of the beams. The results demonstrate that the ANN is able to predict the flexural behavior of the retrofitted RC beams as well as the effect of each parameter including the type of the used epoxy and the presence of the CNTs.

A Comparative Analysis of Artificial Neural Network (ANN) Architectures for Box Compression Strength Estimation

  • By Juan Gu;Benjamin Frank;Euihark Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.163-174
    • /
    • 2023
  • Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

A SEM-ANN Two-step Approach for Predicting Determinants of Cloud Service Use Intention (SEM-Artificial Neural Network 2단계 접근법에 의한 클라우드 스토리지 서비스 이용의도 영향요인에 관한 연구)

  • Guangbo Jiang;Sundong Kwon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.91-111
    • /
    • 2023
  • This study aims to identify the influencing factors of intention to use cloud services using the SEM-ANN two-step approach. In previous studies of SEM-ANN, SEM presented R2 and ANN presented MSE(mean squared error), so analysis performance could not be compared. In this study, R2 and MSE were calculated and presented by SEM and ANN, respectively. Then, analysis performance was compared and feature importances were compared by sensitivity analysis. As a result, the ANN default model improved R2 by 2.87 compared to the PLS model, showing a small Cohen's effect size. The ANN optimization model improved R2 by 7.86 compared to the PLS model, showing a medium Cohen effect size. In normalized feature importances, the order of importances was the same for PLS and ANN. The contribution of this study, which links structural equation modeling to artificial intelligence, is that it verified the effect of improving the explanatory power of the research model while maintaining the order of importance of independent variables.

Displacement prediction of precast concrete under vibration using artificial neural networks

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.559-565
    • /
    • 2020
  • This paper intends to progress models to accurately estimate the behavior of fresh concrete under vibration using artificial neural networks (ANNs). To this end, behavior of a full scale precast concrete mold was investigated numerically. Experimental study was carried out under vibration with the use of a computer-based data acquisition system. In this study measurements were taken at three points using two vibrators. Transducers were used to measure time-dependent lateral displacements at these points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using ANNs. Benefiting ANNs used in this study for modeling fresh concrete, mold design can be performed. For the modeling of ANNs: Experimental data were divided randomly into two parts such as training set and testing set. Training set was used for ANN's learning stage. And the remaining part was used for testing the ANNs. Finally, ANN modeling was compared with measured data. The comparisons show that the experimental data and ANN results are compatible.

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.

Development and Estimation of a Burden Distribution Index for Monitoring a Blast Furnace Condition

  • Chu, Young-Hwan;Choi, Tai-Hwa;Han, Chong-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1830-1835
    • /
    • 2003
  • A novel index representing burden distribution form in the blast furnace is developed and index estimation model is built with an empirical modeling method to monitor inner condition of the furnace without expensive sensors. To find the best combination of index and modeling method, two candidates for the index and four modeling methods have been examined. Results have shown that 3-D index have more resolution in describing the distribution form than 1-D index and ANN model produces smallest RMSE due to nonlinearity between the indices and charging mode. Although ANN has shown the best prediction accuracy in this study, PLS can be a good alternative due to its advantages in generalization capability, consistency, simplicity and training time. The second best result of PLS in the prediction results supports this fact.

  • PDF

A Study on the Load Modeling Using Artificial Neural Network and Power System Analysis (신경회로망에 의한 부하모델링과 계통해석)

  • Ji, Pyeong-Shik;Lee, Jong-Pil;Lim, Jae-Yoon;Kim, Ki-Dong;Park, Si-Woo;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1230-1232
    • /
    • 1999
  • In this research, ANN load model was built on results of field test using residential load, and then proposed ANN load model was applied to transient analysis. The results of this research are as follows. The first, component load modeling using ANN was implemented. The second, group load model was proposed by aggregation of component load. The third, proposed load model was applied to power system analysis. Therefore, Importance of load modeling and precise load modeling method was suggested in this paper.

  • PDF

Comparison of the Performance of Log-logistic Regression and Artificial Neural Networks for Predicting Breast Cancer Relapse

  • Faradmal, Javad;Soltanian, Ali Reza;Roshanaei, Ghodratollah;Khodabakhshi, Reza;Kasaeian, Amir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5883-5888
    • /
    • 2014
  • Background: Breast cancer is the most common cancers in female populations. The exact cause is not known, but is most likely to be a combination of genetic and environmental factors. Log-logistic model (LLM) is applied as a statistical method for predicting survival and it influencing factors. In recent decades, artificial neural network (ANN) models have been increasingly applied to predict survival data. The present research was conducted to compare log-logistic regression and artificial neural network models in prediction of breast cancer (BC) survival. Materials and Methods: A historical cohort study was established with 104 patients suffering from BC from 1997 to 2005. To compare the ANN and LLM in our setting, we used the estimated areas under the receiver-operating characteristic (ROC) curve (AUC) and integrated AUC (iAUC). The data were analyzed using R statistical software. Results: The AUC for the first, second and third years after diagnosis are 0.918, 0.780 and 0.800 in ANN, and 0.834, 0.733 and 0.616 in LLM, respectively. The mean AUC for ANN was statistically higher than that of the LLM (0.845 vs. 0.744). Hence, this study showed a significant difference between the performance in terms of prediction by ANN and LLM. Conclusions: This study demonstrated that the ability of prediction with ANN was higher than with the LLM model. Thus, the use of ANN method for prediction of survival in field of breast cancer is suggested.

Neural Network Modeling of Hydrocarbon Recovery at Petroleum Contaminated Sites

  • Li, J.B.;Huang, G.H.;Huang, Y.F.;Chakma, A.;Zeng, G.M.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.786-789
    • /
    • 2002
  • A recurrent artificial neural network (ANN) model is developed to simulate hydrocarbon recovery process at petroleum-contaminated site. The groundwater extraction rate, vacuum pressure, and saturation hydraulic conductivity are selected as the input variables, while the cumulative hydrocarbon recovery volume is considered as the output variable. The experimental data fer establishing the ANN model are from implementation of a multiphase flow model for dual phase remediation process under different input variable conditions. The complex nonlinear and dynamic relationship between input and output data sets are then identified through the developed ANN model. Reasonable agreements between modeling results and experimental data are observed, which reveals high effectiveness and efficiency of the neural network approach in modeling complex hydrocarbon recovery behavior.

  • PDF