DOI QR코드

DOI QR Code

Antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis from Jeju Island, Korea

  • Lee, Seung-Hong (Department of Marine life Science, Jeju National University) ;
  • Lee, Joon-Baek (Department of Earth and Marine Sciences, Jeju National University) ;
  • Lee, Ki-Wan (Department of Marine life Science, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine life Science, Jeju National University)
  • 발행 : 2010.03.01

초록

In this study, we assessed the antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis, from Jeju Island, Korea. Specifically, the antioxidant activity of fractions isolated from 80% methanol extract, and digests produced from five proteases and carbohydrases, were investigated. Almost all the fractions and the 80% methanol extract exhibited higher effects on 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging. The ethyl acetate fraction showed the highest superoxide anion scavenging activity, while both n-hexane and chloroform fractions exhibited higher $H_2O_2$ scavenging activity. Among the enzymatic digests from H. porphyrae and O. unicellularis, all the digests exhibited remarkable DPPH scavenging activities. In nitric oxide inhibition, all the digests recorded significantly higher effects than those of the commercial antioxidants (p < 0.05). Flavozyme and Neutrase digests from H. porphyrae, and Termamyl and Alcalase digests from O. unicellularis, showed significant effects in metal chelating. Lipid peroxidation was significantly inhibited in the ethyl acetate fraction, in the Celluclast and Protamex digests from H. porphyrae, and in the chloroform fraction from O. unicellularis. These findings suggest that the two tidal pool microalgae tested in this study are rich in potential antioxidative compounds, the specific properties of which can be considered for use in the food and pharmaceutical industries.

키워드

참고문헌

  1. Aruoma, O. I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75:199-212. https://doi.org/10.1007/s11746-998-0032-9
  2. Brand-Williams, W., Cuvelier, M. E. & Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28:25-30.
  3. Chandler, S. F. & Dodds, J. H. 1993. The effect of phosphate, nitrogen, and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2:105-110. https://doi.org/10.1007/BF00270178
  4. Chung, S. K., Osawa, T. & Kawakishi, S. 1997. Hydroxyl radical-scavenging effects of spices and scavengers from black mustard (Brassica nigra). Biosci. Biotechnol. Biochem. 6:118-123.
  5. Cunniff, P. A. 1995. Official method of analysis of the association of official analytical chemists. 16th ed. Association of Official Analytical Chemists, Arlington, 1899 pp.
  6. Decker, E. A. & Welch, B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38:674-677. https://doi.org/10.1021/jf00093a019
  7. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64:97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  8. Furukawa, K. I., Sakai, K., Watanabe, S., Maruyama, K., Murakami, M., Yamaguchi, K. & Ohizumi, Y. 1993. Goniodomin A induces modulation of actomyosin ATPase activity mediated through conformational change of actin. J. Biol. Chem. 268:26026-26031.
  9. Garrat, D. C. 1964. The quantitative analysis of drugs. Chapman & Hall, Tokyo, pp. 456.
  10. Gulcin, I., Oktay, M., Küfrevioglu, O. I. & Aslan, A. 2002. Determination of antioxidant activity of lichen Cetraria islandica (L). Ach. J. Ethnopharmacol. 79:325-329. https://doi.org/10.1016/S0378-8741(01)00396-8
  11. Gulcin, I., Beydemir, S., Ahmet H. A., Elmasta, M. & Buyukokuroglu, M. E. 2004. In vitro antioxidant properties of morphine. Pharmacol. Res. 49:59-66. https://doi.org/10.1016/j.phrs.2003.07.012
  12. Halliweill, B. 1991. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 91:14-19.
  13. Halliwell, B. & Gutteridge, J. M. 1989. Free radical in biology and medicine. 2nd ed. Clarendon Press, Oxford, pp. 23.
  14. Heo, S. J., Lee, K. W., Song, C. B. & Jeon, Y. J. 2003. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18:71-81. https://doi.org/10.4490/ALGAE.2003.18.1.071
  15. Hirata, T., Tanaka, M., Ooike, M., Tsunomura, T. & Sakaguchi, M. 2000. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J. Appl. Phycol. 12: 435-439. https://doi.org/10.1023/A:1008175217194
  16. Kardosova, A. & Machova E. 2006. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia 77:367-373. https://doi.org/10.1016/j.fitote.2006.05.001
  17. Kikuzaki, H. & Nakatani, N. 1993. Antioxidant effects of some ginger constituents. J. Food Sci. 58:1407-1410. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  18. Lee, J. B., Shynn, B. & Lee, M. H. 2001. Seasonal dynamics of microalgal assemblage at tidepools in the southern intertidal zones of Cheju Island, Korea. Algae 16:197-207.
  19. Lindenschmidt, R. C., Tryka, A. F., Goad, M. E. & Wits-chi, H. P. 1986. The effects of dietary butylated hydroxytoluene on liver and colon tumor develo-pment in mice. Toxicology 38:151-160. https://doi.org/10.1016/0300-483X(86)90116-2
  20. Liu, F. & Ng, T. B. 2000. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci. 66:725-735. https://doi.org/10.1016/S0024-3205(99)00643-8
  21. Lu, Y. & Foo, L. Y. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68:81-85. https://doi.org/10.1016/S0308-8146(99)00167-3
  22. Moncada, S., Palmer, R. M. & Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109-142.
  23. Moure, A., Domínguez, H. & Parajo, J. C. 2006. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41:447-456. https://doi.org/10.1016/j.procbio.2005.07.014
  24. Muller, H. E. 1985. Detection of hydrogen peroxide produced by microorganisms on ABTS peroxidase medium. Zentralbl. Bakteriol. Mikrobiol. Hyg. A. 259:151-154.
  25. Murakami, Y., Oshima, Y. & Yasumoto, T. 1982. Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Nippon Suisan Gakkaishi 48:69-72. https://doi.org/10.2331/suisan.48.69
  26. Mynderse, J. S., Moore, R. E., Kashiwagi, M. & Norton, T. R. 1977. Antileukemia activity in the Osillatoriaceae: isolation of Debromoaplysistoxin from Lyngbya. Science 196:538-540. https://doi.org/10.1126/science.403608
  27. Nagai, T., Inoue, R., Inoue, H. & Suzuki, N. 2003. Preparation and antioxidant properties of water extract of propolis. Food Chem. 80:29-33. https://doi.org/10.1016/S0308-8146(02)00231-5
  28. Nakamura, T., Nagayama, K., Uchida, K. & Tanaka, R. 1996. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish. Sci 62:923-926.
  29. Oki, T., Masuda, M., Furuta, S., Nishiba, Y., Terahara, N. & Suda, I. 2002. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 67:1752-1756. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x
  30. Penta-Ramos, E. A. P. & Xiong, Y. L. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. J. Food Sci. 67:2952-2956. https://doi.org/10.1111/j.1365-2621.2002.tb08844.x
  31. Proschold, T., Surek, B., Marin, B. & Melkonian, M. 2002. Protist origin of the Ulvophyceae (Chlorophyta) revealed by SSU rDNA analyses of marine coccoid green algae. J. Phycol. 38:30-31.
  32. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:481-487. https://doi.org/10.1016/0003-9861(91)90224-7
  33. Rho, M. C., Nakahata, N., Nakamura, H., Murai, A. & Ohizumi, Y. 1995. Activation of rabbit platelets by Ca2+ influx and thromboxane A2 release in an external Ca(2+)-dependent manner by zooxanthellatoxin-A, a novel polyol. Br. J. Pharmacol. 115:433-440. https://doi.org/10.1111/j.1476-5381.1995.tb16352.x
  34. Rho, M. C., Nakahata, N., Nakamura, H., Murai, A. & Ohizumi, Y. 1997. Tyrphostin 23blocksphosphorylation of p42 but not p38 mitogen-activated protein kinase by zooxanthellatoxin-A. Eur. J. Pharmacol. 319:375-378. https://doi.org/10.1016/S0014-2999(96)00975-2
  35. Ruperez, P., Ahrazem, O. & Leal, J. A. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50:840-845. https://doi.org/10.1021/jf010908o
  36. Sherwin, E. R. 1990. Antioxidants. In Branen, A. I., Davidson, P. M. & Salminen, S. (Eds.) Food Additives. Marcel Dekker, New York, pp. 139-292.
  37. Siriwardhana, N., Jeon, Y. J., Kim, S. H., Ha, J. H., Heo, S. J. & Lee, K. W. 2004. Enzymatic hydrolysis for effective extraction of antioxidative compounds from Hizikia fusiformis. Algae 19:59-68. https://doi.org/10.4490/ALGAE.2004.19.1.059
  38. Spitz, T. T., Bergman, M., Moppes, D., Grossman, S. & Arad, M. S. 2005. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J. Appl. Phycol. 17:215–222.
  39. Tomas, W. H. 1996. Effects of temperature and illuminance on cell division rates of three species of tropical oceanic phytoplankton. J. Phycol. 2:17-22.
  40. Ukeda, H., Shimamura, T., Tsubouchi, M., Harada, Y., Nakai, Y. & Sawamura, M. 2002. Spectrophotometric assay of superoxide anion formed in maillard reaction based on highly water-soluble tetrazolium salt. Anal. Sci 18:1151-1154. https://doi.org/10.2116/analsci.18.1151
  41. Wang, J., Zhao, M., Zhao, Q. & Jiang, Y. 2007. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem. 101:1658-1663. https://doi.org/10.1016/j.foodchem.2006.04.024
  42. Yang, M. Y., Han, Y. K. & Noh, B. S. 2000. Analysis of lipid oxidation of soybean oil using the portable electronic nose. Food Sci. Technol. 9:146-150.

피인용 문헌

  1. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content vol.24, pp.6, 2012, https://doi.org/10.1007/s10811-012-9804-6
  2. Rapid Screening and Guided Extraction of Antioxidants from Microalgae Using Voltammetric Methods vol.60, pp.30, 2012, https://doi.org/10.1021/jf302345j
  3. Purification of antioxidative peptide from peptic hydrolysates of Mideodeok (Styela clava) flesh tissue vol.22, pp.2, 2013, https://doi.org/10.1007/s10068-013-0112-y
  4. Chemical Composition and Biological Activities of Trans-Himalayan Alga Spirogyra porticalis (Muell.) Cleve vol.10, pp.2, 2015, https://doi.org/10.1371/journal.pone.0118255
  5. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses vol.91, 2016, https://doi.org/10.1016/j.ijbiomac.2016.05.111
  6. Effects of Production Factors and Egg-Bearing Period on the Antioxidant Activity of Enzymatic Hydrolysates from Shrimp (Pandalopsis dispar) Processing Byproducts vol.60, pp.27, 2012, https://doi.org/10.1021/jf300867g
  7. Impact of nutrient stress on antioxidant production in three species of microalgae vol.7, 2015, https://doi.org/10.1016/j.algal.2014.12.002
  8. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater vol.13, pp.12, 2015, https://doi.org/10.3390/md13127069
  9. Phytochemical profiles of marine phytoplanktons: an evaluation of their in vitro antioxidant and anti-proliferative activities vol.7, pp.12, 2016, https://doi.org/10.1039/C6FO01033D
  10. Scavenging Evaluation of Different Free Radicals by Three Species of Ziziphus and Their Fractions vol.41, pp.1, 2017, https://doi.org/10.1007/s40995-017-0205-1
  11. Antioxidant activity of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana clone Tahiti vol.55, 2017, https://doi.org/10.1088/1755-1315/55/1/012067
  12. Exploring the Bio-efficacies of Methanolic Extracts of Nostoc muscorum and Calothrix brevissima with their Characterization Using GC-MS vol.8, pp.4, 2010, https://doi.org/10.2174/2210315508666180807095636
  13. Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics vol.41, pp.2, 2010, https://doi.org/10.1080/07388551.2021.1874284
  14. Antioxidant Compounds from Microalgae: A Review vol.19, pp.10, 2010, https://doi.org/10.3390/md19100549
  15. Impact of Light Stress on the Synthesis of Both Antioxidants Polyphenols and Carotenoids, as Fast Photoprotective Response in Chlamydomonas reinhardtii: New Prospective for Biotechnological Potential vol.13, pp.11, 2010, https://doi.org/10.3390/sym13112220