DOI QR코드

DOI QR Code

Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed

  • Choi, Tae-Seob (Department of Oceanography, Chonnam National University) ;
  • Kang, Eun-Ju (Department of Oceanography, Chonnam National University) ;
  • Kim, Ju-Hyoung (Department of Oceanography, Chonnam National University) ;
  • Kim, Kwang-Young (Department of Oceanography, Chonnam National University)
  • 발행 : 2010.03.01

초록

The effects of salinity on various ecophysiological parameters of Ulva pertusa such as growth, nutrient uptake, photosynthetic performance and internal nutrient composition were tested. U. pertusa was collected from an eelgrass bed in a semi-protected embayment on the southwest coast of Korea. Under salinity regimes from 5 to 40 psu, the specific growth rates $(\mu)$ of U. pertusa ranged from 0.019 to $0.032\;d^{-1}$. Maximum growth rate was observed at 20 psu, and minimum at 40 psu. This species showed various uptake rates for nitrate and phosphate. Nutrient uptake was noticeably higher at intermediate salinity levels, and lower at both extremes. Salinity significantly influenced chlorophyll-$\alpha$ content and effective quantum yield. Tissue nitrogen content ranged from 1.5 to 2.9% N (dry weight), whereas tissue phosphorus ranged from 0.1 to 0.14% P (dry weight). The N : P ratio in the tissue of U. pertusa was considerably higher, ranging from 30 to 50. Increased growth at lower salinity suggests that the initial growth rate of U. pertusa is greater during the rainy season (i.e., late spring and early summer) than any other season during the year. The appearance of an Ulva bloom in eelgrass beds may be triggered by salinity more than by other environmental factors such as light and temperature.

키워드

참고문헌

  1. Burkholder, J. M., Tomasko, D. A. & Touchette, B. W. 2007. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 350:46-72. https://doi.org/10.1016/j.jembe.2007.06.024
  2. Choi, T. S., Kim, J. H. & Kim, K. Y. 2001. Seasonal changes in the abundance of Ulva mats on a rocky intertidal zone of the southern coast of Korea. Algae 16:337-341.
  3. Craggs, R. J., McAuley, P. J. & Smith, V. J. 1994. Batch culture screening of marine microalgal nutrient removal from primary sewage effluent. Hydrobiologia 288:157-166. https://doi.org/10.1007/BF00006239
  4. Davison, I. R. & Pearson, G. A. 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32:197-211. https://doi.org/10.1111/j.0022-3646.1996.00197.x
  5. De Casabianca, M. L. 1989. Degradation of Ulva (Ulva rotundata, Prevost Lagoon, France). C. R. Acad. Sci. Paris 308:155-160
  6. D’Elia, C. F., Steudler, P. A. & Corwin, N. 1977. Determination of total nitrogen in aqueous samples using persulphate digestion. Limnol. Oceanogr. 22:760-764. https://doi.org/10.4319/lo.1977.22.4.0760
  7. Dickson, D. M. J., Wyn-Jones, R. G. & Davenport, J. 1982. Osmotic adaptation in Ulva latuca under fluctuating salinity regimes. Planta 155:409-415. https://doi.org/10.1007/BF00394469
  8. Edward, D. M., Reed, R. H., Chudek, J. A., Foster, R. & Stewart, W. D. P. 1987. Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis. Mar. Biol. 95:583-592. https://doi.org/10.1007/BF00393102
  9. Everett, R. A. 1994. Macroalgae in marine soft-sediment communities: effects on benthic faunal assemblages. J. Exp. Mar. Biol. Ecol. 175:253-274. https://doi.org/10.1016/0022-0981(94)90030-2
  10. Fillit, M. 1995. Seasonal changes in the photosynthetic capacities and pigment content of Ulva rigida in a Mediterranean coastal lagoon. Bot. Mar. 38:271-280. https://doi.org/10.1515/botm.1995.38.1-6.271
  11. Floreto, E. A. T., Hirata, H., Yamasaki, S. & Castro, S. C. 1994. Effect of salinity on the growth and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 37:151-155 https://doi.org/10.1515/botm.1994.37.2.151
  12. Fong, P., Boyer, K. E., Desmond, J. S. & Zedler, J. B. 1996. Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae? J. Exp. Mar. Biol. Ecol. 206:203-221. https://doi.org/10.1016/S0022-0981(96)02630-5
  13. Gordillo, F. J. L., Dring, M. J. & Savidge, G. 2002. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Mar. Ecol. Prog. Ser. 234:111-118. https://doi.org/10.3354/meps234111
  14. Grasshoff, K., Ehrhardt, M. & Kremling, K. 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, 419 pp.
  15. Hauxwell, J., Cebrian, J., Furlong, C. & Valiela, I. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82:1007-1022. https://doi.org/10.1890/0012-9658(2001)082[1007:MCCTEZ]2.0.CO;2
  16. Hemminga, M. A. & Duarte, C. M. 2000. Seagrass ecology. Cambridge University Press, Cambridge, 298 pp.
  17. Hull, S. C. 1987. Macroalgal mats and species abundance: a field experiment. Estuar. Coast. Shelf Sci. 25:519-532. https://doi.org/10.1016/0272-7714(87)90112-0
  18. Isaksson, I. & Phil, L. 1992. Structural changes in benthic macrovegetation and associated epibenthic faunal communities. Neth. J. Sea Res. 30:131-140. https://doi.org/10.1016/0077-7579(92)90052-G
  19. Jeffrey, S. W. & Humphrey, G. F. 1975. New spectro-photometric equations for determining chlorophylls a, b, c1and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191-194.
  20. Kamer, K. & Fong, P. 2000. A fluctuating salinity regime mitigates the negative effects of reduced salinity on the estuarine macroalga, Enteromorpha intestinalis (L.) link. J. Exp. Mar. Biol. Ecol. 254:53-69. https://doi.org/10.1016/S0022-0981(00)00262-8
  21. Kim, K. Y., Choi, T. S., Kim, J. H., Han, T., Shin, H. W. & Garbary, D. J. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492. https://doi.org/10.2216/i0031-8884-43-4-483.1
  22. Kinney, E. H. & Roman, C. T. 1998. Response of primary producers to nutrient enrichment in a shallow estuary. Mar. Ecol. Prog. Ser.163:89-98. https://doi.org/10.3354/meps163089
  23. Kirst, G. O. 1990. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:21-53. https://doi.org/10.1146/annurev.pp.41.060190.000321
  24. Krause-Jensen, D., Middelboe, A. L., Sand-Jensen, K. & Christensen, P. B. 2000. Eelgrass, Zostera marina, growth along depth gradients: upper boundaries of the variation as a powerful predictive tool. Oikos 91:233-244. https://doi.org/10.1034/j.1600-0706.2001.910204.x
  25. Lavery, P. S., Lukatelich, R. J. & McComb, A. J. 1991. Changes in the biomass and species composition of macroalgae in a eutrophic estuary. Estuar. Coast. Shelf Sci. 33:1-22. https://doi.org/10.1016/0272-7714(91)90067-L
  26. Lee, T. M. & Liu, C. H. 1999. Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J. Exp. Bot. 50:1855-1862. https://doi.org/10.1093/jexbot/50.341.1855
  27. Liu, C. H., Shih, M. C. & Lee, T. M. 2000. Free proline levels in Ulva (Chlorophyta) in response to hypersalinity: elevated NaCl in seawater versus concentrated seawater. J. Phycol. 36:118-119. https://doi.org/10.1046/j.1529-8817.2000.99127.x
  28. Liu, D. Y., Keesing, J. K., Xing, Q. G. & Shi, P. 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 58:888-895. https://doi.org/10.1016/j.marpolbul.2009.01.013
  29. Lobban, C. S. & Harrison, P. J. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, 366 pp.
  30. Martins, I., Oliveira, S. M., Flindt, M. R. & Marques, J. C. 1999. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecol. 20:259-265. https://doi.org/10.1016/S1146-609X(99)00140-X
  31. Martins, I., Pardal, M. A., Lillebo, A. I., Flindt, M. R. & Marques, J. C. 2001. Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: a case study on the influence of precipitation and river management. Est. Coast. Shelf Sci. 52:165-177. https://doi.org/10.1006/ecss.2000.0708
  32. McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol. 37:453-456. https://doi.org/10.1046/j.1529-8817.2001.037004453.x
  33. McGlathery, K. J., Pedersen, M. F. & Borum, J. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J. Phycol. 32:393-401. https://doi.org/10.1111/j.0022-3646.1996.00393.x
  34. Morand, P. & Briand, X. 1996. Excessive growth of macroalgae: a symptom of environmental disturbance. Bot. Mar. 39:491-516. https://doi.org/10.1515/botm.1996.39.1-6.491
  35. Murthy, M. S., Sharma, C. L. N. S. & Rao, Y. N. 1988. Salinity induced changes in peroxidase activity in the green seaweed Ulva lactuca. Bot. Mar. 31:307-310. https://doi.org/10.1515/botm.1988.31.4.307
  36. Nedergaard, R. I., Risgaard-Petersen N. & Finster, K. 2002. The importance of sulfate reduction associated with Ulva lactuca thalli during decomposition: a mesocosm experiment. J. Exp. Mar. Biol. Ecol. 275:15-29. https://doi.org/10.1016/S0022-0981(02)00211-3
  37. Nelson, T. A., Haberlin, K., Nelson, A. V., Ribarich, H., Hotchkiss, R., Van Alstyne, K. L., Buckingham, L., Simunds, D. J. & Fredrickson, K. 2008. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89:1287-1298. https://doi.org/10.1890/07-0494.1
  38. Norton, T. A., Mathieson, A. C. & Neushul, M. 1981. Morphology and envirionment. In Lobban, C. S. & Wynne, M. J. (Eds.) The Biology of Seaweeds. Blackwell Scientific, Oxford, pp. 421-451.
  39. Ritchie, R. J. & Larkum, A. W. D. 1987. The ionic relations of small-celled marine algae. Prog. Phycol. Res. 5:179-222.
  40. Rivers, J. S. & Peckol, P. 1995. Interactive effects of nitrogen and dissolved inorganic carbon on photosynthesis, growth, and ammonium uptake of macroalgae, Cladophora vagabunda and Gracilaria tikvahiae. Mar. Biol. 121:747-753. https://doi.org/10.1007/BF00349311
  41. Rosenberg, G. & Ramus, J. 1982. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): soluble nitrogen and reserve carbohydrates. Mar. Biol. 66:251-259. https://doi.org/10.1007/BF00397030
  42. Schramm, W. 1996. The Baltic sea and its transition zones. In Schramm, W. & Nienhuis, P. H. Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication. Springer-Verlag, Berlin, pp. 133.
  43. Schreiber, U. & Bilger, W. 1993. Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog. Bot. 54:151-173.
  44. Sfriso, A. & Marcomini, A. 1997. Macrophyte production in a shallow coastal lagoon: 1. Coupling with chemico-physical parameters and nutrient concentrations in waters. Mar. Environ. Res. 44:351-375. https://doi.org/10.1016/S0141-1136(97)00012-3
  45. Sfriso, A., Pavoni, B., Marcomini, A. & Orio, A. A. 1992. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice. Estuaries 15:517-528. https://doi.org/10.2307/1352394
  46. Short, F. T., Burdick, D. M. & Kaldy, J. E. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol. Oceanogr. 40:740-749. https://doi.org/10.4319/lo.1995.40.4.0740
  47. Trimmer, M., Nedwell, D. B., Sivyer, D. B. & Malcolm, S. J. 2000. Seasonal organic mineralisation and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp. Mar. Ecol. Prog. Ser. 203:67-80. https://doi.org/10.3354/meps203067
  48. Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D. & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42:1105-1118. https://doi.org/10.4319/lo.1997.42.5_part_2.1105
  49. Wheeler, P. A. & Bjornsater, B. R. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus, and N-P for five macroalgal species common to the Pacific northwest coast. J. Phycol. 28:1-6. https://doi.org/10.1111/j.1529-8817.1992.tb04489.x
  50. Yarish, C. & Edwards, P. 1982. A field and cultural investigation of the horizontal and seasonal distribution of estuarine red algae of New Jersey. Phycologia 21:112-124. https://doi.org/10.2216/i0031-8884-21-2-112.1
  51. Young, A. J., Collins, J. C. & Russell, G. 1987a. Solute regulation in the euryhaline marine alga Enteromorpha prolifera (O. F. Müll.). J. Ag. J. Exp. Bot. 38:1298-1308. https://doi.org/10.1093/jxb/38.8.1298
  52. Young, A. J., Collins, J. C. & Russell, G. 1987b. Ecotypic variation in the osmotic responses of Enteromorpha intestinalis (L.) Link. J. Exp. Bot. 38:1309-1324. https://doi.org/10.1093/jxb/38.8.1309
  53. Zavodnik, N. 1975. Effects of temperature and salinity variations on photosynthesis of some littoral seaweeds of the North Adriatic Sea. Bot. Mar. 18:245-250. https://doi.org/10.1515/botm.1975.18.4.245

피인용 문헌

  1. Reproductive sterility increases the capacity to exploit the green seaweed Ulva rigida for commercial applications vol.24, 2017, https://doi.org/10.1016/j.algal.2017.03.008
  2. Indirect and direct effects of salinity on the quantity and quality of total amino acids inUlva ohnoi(Chlorophyta) vol.51, pp.3, 2015, https://doi.org/10.1111/jpy.12300
  3. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea vol.23, pp.3, 2011, https://doi.org/10.1007/s10811-010-9590-y
  4. Adaptations of a green tide formingUlva linza(Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea vol.55, pp.2, 2016, https://doi.org/10.2216/15-67.1
  5. Effects of varying CO2, Nutrient and Light Irradiance Levels on the Growth of Ulva australis at Germling, Juvenile, and Adult Stages vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0096
  6. Physiological ecology of photosynthesis inPrasiola stipitata(Trebouxiophyceae) from the Bay of Fundy, Canada vol.61, pp.3, 2013, https://doi.org/10.1111/pre.12017
  7. Environmental tolerance of the two invasive species Ciona intestinalis and Codium fragile: their invasion potential along a temperate coast vol.16, pp.12, 2014, https://doi.org/10.1007/s10530-014-0680-7
  8. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2488-7
  9. Effects of Environmental Factors on the Zoospore Release and Germling Growth of the Green Macroalga Chaetomorpha linum vol.38, pp.1, 2016, https://doi.org/10.4217/OPR.2016.38.1.047
  10. Genetic diversity and biogeography of native and introduced populations ofUlva pertusa(Ulvales, Chlorophyta) vol.64, pp.2, 2016, https://doi.org/10.1111/pre.12123
  11. Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions vol.163, 2015, https://doi.org/10.1016/j.ecss.2015.03.018
  12. Effects of wave action and grazers on frond perforation of the green alga, Ulva australis vol.30, pp.1, 2015, https://doi.org/10.4490/algae.2015.30.1.059
  13. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress vol.187, 2017, https://doi.org/10.1016/j.jenvman.2016.11.006
  14. Comparing the low-salinity tolerance ofUlvaspecies distributed in different environments vol.61, pp.1, 2013, https://doi.org/10.1111/j.1440-1835.2012.00668.x
  15. Influence of nutrients pollution on the growth and organic matter output of Ulva prolifera in the southern Yellow Sea, China vol.95, pp.1, 2015, https://doi.org/10.1016/j.marpolbul.2015.04.034
  16. Changes in morphological plasticity of Ulva prolifera under different environmental conditions: A laboratory experiment vol.59, 2016, https://doi.org/10.1016/j.hal.2016.09.004
  17. Changes in the water quality characteristics during a macroalgal bloom in a coastal lagoon vol.118, 2015, https://doi.org/10.1016/j.ocecoaman.2015.04.020
  18. Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza vol.100, 2012, https://doi.org/10.1016/j.aquabot.2012.03.006
  19. Effects of Temperature, Irradiance, and Nutrient Type on the Fragment Growth of Green Tide Alga Cladophora vadorum vol.49, pp.5, 2016, https://doi.org/10.5657/KFAS.2016.0657
  20. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta) vol.146, 2013, https://doi.org/10.1016/j.biortech.2013.06.062
  21. High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina vol.536, 2015, https://doi.org/10.3354/meps11435
  22. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera vol.35, pp.10, 2016, https://doi.org/10.1007/s13131-016-0891-0
  23. Dietary substitution effect of Ulva australis for Undaria pinnatifida on growth, body composition and air exposure of juvenile abalone, Haliotis discus (Reeve 1846) pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1654-4
  24. Functional and Compositional Responses of Periphyton Mats to Simulated Saltwater Intrusion in the Southern Everglades vol.41, pp.7, 2018, https://doi.org/10.1007/s12237-018-0415-6
  25. ) wastewater versus natural estuarine water vol.34, pp.6, 2018, https://doi.org/10.1080/02757540.2018.1452918
  26. Comparative Studies on the Ecophysiological Differences of Two Green Tide Macroalgae under Controlled Laboratory Conditions vol.7, pp.8, 2010, https://doi.org/10.1371/journal.pone.0038245
  27. 녹조대발생종 솜대마디말(Cladophora albida)의 유주자 방출과 초기생장에 환경요인이 미치는 영향 vol.50, pp.2, 2010, https://doi.org/10.5657/kfas.2017.0175
  28. 구멍갈파래(Ulva australis) 해조류 사멸에 미치는 여러 물리화학적 요인들의 영향 vol.6, pp.3, 2010, https://doi.org/10.5660/wts.2017.6.3.222
  29. Physiological acclimation of the green tidal alga Ulva prolifera to a fast-changing environment vol.137, pp.None, 2010, https://doi.org/10.1016/j.marenvres.2018.02.018
  30. Submarine Groundwater Discharge Differentially Modifies Photosynthesis, Growth, and Morphology for Two Contrasting Species of Gracilaria (Rhodophyta) vol.5, pp.4, 2018, https://doi.org/10.3390/hydrology5040065
  31. Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions vol.33, pp.4, 2010, https://doi.org/10.4490/algae.2018.33.11.13
  32. Optimization of Macroalgal Density and Salinity for Nutrient Removal by Caulerpa lentillifera from Aquaculture Effluent vol.7, pp.5, 2019, https://doi.org/10.3390/pr7050303
  33. Salinity mediates the effects of nitrogen enrichment on the growth, photosynthesis, and biochemical composition of Ulva prolifera vol.26, pp.19, 2010, https://doi.org/10.1007/s11356-019-05364-y
  34. Scaling the production of Monostroma sp. by optimizing culture conditions vol.32, pp.1, 2020, https://doi.org/10.1007/s10811-019-01922-6
  35. Effects of geographical location on potentially valuable components in Ulva intestinalis sampled along the Swedish coast vol.1, pp.1, 2010, https://doi.org/10.1080/26388081.2020.1827454
  36. Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea vol.35, pp.4, 2010, https://doi.org/10.4490/algae.2020.35.12.4
  37. Salinity tolerance of macroalgae Gracilaria birdiae vol.51, pp.1, 2021, https://doi.org/10.1590/0103-8478cr20190958
  38. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation vol.19, pp.5, 2010, https://doi.org/10.3390/md19050245
  39. Responses of the marine carbonate system to a green tide: A case study of an Ulva prolifera bloom in Qingdao coastal waters vol.110, pp.None, 2021, https://doi.org/10.1016/j.hal.2021.102133
  40. Lipid accumulation patterns and role of different fatty acid types towards mitigating salinity fluctuations in Chlorella vulgaris vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-020-79950-3
  41. Experiments to parametrise a growth and nutrient storage model for Agarophyton spp. vol.264, pp.None, 2010, https://doi.org/10.1016/j.ecss.2021.107660