DOI QR코드

DOI QR Code

Dechlorination of High Concentrations of Tetrachloroethylene Using a Fixed-bed Reactor

  • Chang, Young-C. (Division of Applied Sciences, College of Environmental Technology, Graduate School of Engineering, Muroran Institute of Technology) ;
  • Park, Chan-Koo (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Jung, Kweon (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kikuchi, Shintaro (Division of Applied Sciences, College of Environmental Technology, Graduate School of Engineering, Muroran Institute of Technology)
  • Received : 2010.07.01
  • Accepted : 2010.08.12
  • Published : 2010.08.30

Abstract

We evaluated the properties of a fixed-bed column reactor for high-concentration tetrachloroethylene (PCE) removal. The anaerobic bacterium Clostridium bifermentans DPH-1 was able to dechlorinate PCE to cis-1,2-dichloroethylene (cDCE) via trichloroethylene (TCE) at high rates in the monoculture biofilm of an upflow fixed-bed column reactor. The first-order reaction rate of C. bifermentans DPH-1 was relatively high at $0.006\;mg\;protein^{-1}{\cdot}l{\cdot}h^{-1}$, and comparable to rates obtained by others. When we gradually raised the influent PCE concentration from $30\;{\mu}M$ to $905\;{\mu}M$, the degree of PCE dechlorination rose to over 99% during the operation period of 2,000 h. In order to maintain efficiency of transformation of PCE in this reactor system, more than 6 h hydraulic retention time (HRT) is required. The maximum volumetric dechlorination rate of PCE was determined to be $1,100\;{\mu}mol{\cdot}d^{-1}l$ of reactor $volume^{-1}$, which is relatively high compared to rates reported previously. The results of this study indicate that the PCE removal performance of this fixed-bed reactor immobilized mono-culture is comparable to that of a fixed-bed reactor mixture culture system. Furthermore, our system has the major advantage of a rapid (5 days) start-up time for the reactor. The flow characteristics of this reactor are intermediate between those of the plug-flow and complete-mix systems. Biotransformation of PCE into innocuous compounds is desirable; however, unfortunately cDCE, which is itself toxic, was the main product of PCE dechlorination in this reactor system. In order to establish a system for complete detoxification of PCE, co-immobilization of C. bifermentans DPH-1 with other bacteria that degrade cDCE aerobically or anaerobically to ethene or ethane may be effective.

Keywords

References

  1. Afroza, H. S., Hasegawa, Y., Nomura, I., Chang, Y.C., Sato, T. and Takamizawa, K. : Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnology and Bioprocess Engineering 10, 40-46, 2005. https://doi.org/10.1007/BF02931181
  2. Aulenta, F., Majone, M., Verbo, P. and Tandoi, V. : Complete dechlorination of tetrachloroethene to ethane in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation 13, 411-424, 2002. https://doi.org/10.1023/A:1022868712613
  3. Aulenta, F., Fina, A., Potalivo, M., Papini, M. P., Rossetti, S. and Majone, M. : Anaerobic transformation of tetrachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Water Science and Technology, 52, 357-362, 2005.
  4. Aulenta, F., Di Tomassi, C., Cupo, C., Papini, M. P. and Majone, M. : Influence of hydrogen on the reductive dechlorination of tetrachloroethene (PCE) to ethene in a methanogenic biofilm reactor: Role of mass transport phenomena. Journal of Chemical Technology & Biotechnology, 81, 1520-1529, 2006. https://doi.org/10.1002/jctb.1562
  5. Brewster, C. Jr, Cherry, J. A. and Gillham, R. W. : A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Journal of Contaminant Hydrology, 73, 249-279, 2004. https://doi.org/10.1016/j.jconhyd.2004.04.001
  6. Cabirol, N., Jacob, F., Perrier, J., Fouillet, B. and Chambon, P. : Complete degradation of high concentrations of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. Journal of Biotechnology 62, 133-141, 1998. https://doi.org/10.1016/S0168-1656(98)00053-4
  7. Carter, S. R. and Jewel, W. J. : Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Research, 27, 607-615, 1993. https://doi.org/10.1016/0043-1354(93)90170-M
  8. Chang, Y. C., Hatsu, M., Jung, K., Yoo, Y. S. and Takamizawa, K. : Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Journal of Bioscience and Bioengineering, 89, 489-491, 2000. https://doi.org/10.1016/S1389-1723(00)89102-1
  9. Cole, J. R., Fathepure, B. Z. and Tiedje, J. M. : Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedje DCB-1. Biodegradation 6, 167-172, 1995. https://doi.org/10.1007/BF00695347
  10. Christiansen, N., Christensen, S. R., Arvin, E. and Ahring, B. K. : Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor. Applied Microbiology and Biotechnology, 47, 91-94, 1997. https://doi.org/10.1007/s002530050894
  11. Cupples, A. M., Spormann, A. M. and McCarty, P. L. : Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environmental Science & Technology, 38, 4768-4774, 2004. https://doi.org/10.1021/es049965z
  12. Damborsky, J : Tetrachloroethene-Dehalogenating Bacteria. Folia Microbiologica, 44, 247-262, 1999. https://doi.org/10.1007/BF02818543
  13. DiStefano, T. D., Gossett, J. M. and Zinder, S. H. : Reductive dechlorination of high concentration of tetrachloroethene to ethane by an anaerobic enrichment culture in the absence of methanogenesis. Applied and Environmental Microbiology, 57, 2287-2292, 1991.
  14. deBruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G. and Zehnder, A. J. B. : Complete biological reductive transformation of tetrachloroethene to ethane. Applied and Environmental Microbiology, 58, 1996-2000, 1992.
  15. Eisenbeis, M., Bauer-Kreisel, P. and Scholz-Muramatsu, H. : Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by Dehalospirillum multivorans in biofilms. Water Science and Technology, 36, 191-198, 1997.
  16. Ensley, B. D. : Biochemical diversity of trichloroethylene metabolism. Annual Review of Microbiology, 45, 283-299, 1991. https://doi.org/10.1146/annurev.mi.45.100191.001435
  17. Fathepure, B. Z., Nengu, J. P. and Boyd, S. T. : Anaerobic bacteria that dechlorinate perchloroethene. Applied and Environmental Microbiology, 53, 2671-2674, 1987.
  18. Fathepure, B. Z. and Vogel, T. M. : Complete degradation of polychlorinated hydrocarbons by a twostage biofilm reactor. Applied and Environmental Microbiology, 57, 3418-3422, 1991.
  19. Fetzener, S. : Bacterial dehalogenation. Applied Microbiology and Biotechnology, 50, 633-657, 1998. https://doi.org/10.1007/s002530051346
  20. Freedman, D. L. and Gossett, G. W. : Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology, 55, 2144-2151, 1989.
  21. Flynn, S. J., Loffler, F. E. and Tiedje, J. M. : Microbial community changes association with a shift from reductive degradation of PCE to reductive degradation of cis-DCE and VC. Environmental Science & Technology, 34, 1056-1061, 2000. https://doi.org/10.1021/es9908164
  22. Gerritse, J., Renard, V., Visser, J. and Gottschal, J. C. : Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Applied Microbiology and Biotechnology, 43, 920-928, 1995. https://doi.org/10.1007/BF02431929
  23. Gerritse, J., Kloetstra, G., Borger, A., Dalstra, G., Alphenaar, A. and Gottschal, J. C. : Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Applied Microbiology and Biotechnology, 48, 553-562, 1997. https://doi.org/10.1007/s002530051096
  24. Hirl, P. J. and Irvine, R. L. : Reductive dechlorination of perchloroethylene using anaerobic sequencing batch biofilm reactors (AnSBBR). Water Science and Technology, 35, 49-56, 1997.
  25. Hoelen, T. P., Cunningham, J. A., Hopkins, G. D., Lebron, C. A. and Reinhard, M. : Bioremediation of cis-DCE at a sulfidogenic site by amendment with propionate. Ground Water Monitoring and Remediation, 26, 82-91, 2006.
  26. Holliger, C., Sehraa, G., Stams, A. J. M. and Zehnder, A. J. B. : A high purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology, 59, 2991-2997, 1993.
  27. Hobber, C., Christiansen, N., Arvin, E. and Ahring, B. K. : Improved dechlorinating incorporation of Dehalospirillum multivorans into granular sludge. Applied and Environmental Microbiology, 64, 1860-1863, 1998.
  28. Isalou, M., Sleep, B. E. and Liss, S. N. : Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environmental Science & Technology, 32, 3579-3585, 1998. https://doi.org/10.1021/es9803052
  29. Hata, J., Miyata, N., Kim, E. S., Takamizawa, K. and Iwahori, K. : Anaerobic degradation of cisdichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. Journal of Bioscience and Bioengineering, 97, 196-201, 2004. https://doi.org/10.1016/S1389-1723(04)70190-5
  30. Komatsu, T., Shinmyo, J. and Momonoi, K : Reductive transformation of tetrachloroethy1ene to ethylene and ethane by an anaerobic filter. Water Science and Technology, 36, 125-132, 1997.
  31. Koziollet, P. D., Bryniok, D. and Knackmuss, H. J. : Ethene as an auxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chloride. Archives of Microbiology, 172, 240-246, 1999. https://doi.org/10.1007/s002030050766
  32. Lee, T. H., Tokunaga, T., Suyama, A. and Furukawa, K. : Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. Journal of Bioscience and Bioengineering, 92, 453-458, 2001. https://doi.org/10.1263/jbb.92.453
  33. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randell, R. J. : Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275, 1951.
  34. Ma, X., Novak, P. J., Clapp, L. W., Semmens, M. J. and Hozalski, R. M. : Evaluation of hollow-fiber polyethylene membranes for hydrogen delivery to support reductive dechlorination in a soil column. Water Research, 37, 2905-2918, 2003. https://doi.org/10.1016/S0043-1354(03)00111-8
  35. Ma, X., Novak, P. J., Semmens, M. J., Clapp, L. W. and Hozalski, R. M. : Comparison of pulsed and continuous addition of $H_2$ gas via membranes for stimulating PCE biodegradation in soil columns. Water Research, 40, 1155-1166, 2006. https://doi.org/10.1016/j.watres.2006.01.005
  36. Malachowsky, K. J., Phelps, T. J., Teboli, A. B., Minikin, D. E. and White, D. C. : Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Applied and Environmental Microbiology, 60, 542-548, 1994.
  37. Maymo-Gatell, X., Tandoi, V., Gossett, J. M. and Zinder, S. H. : Characterization of an $H_{2}$-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Applied and Environmental Microbiology, 61, 3928-3933, 1995.
  38. Maymo-Gatell, X., Chien, Y. T., Gossett, J. M. and Zinder, S. H. : Isolation of a bacterium that reductively dechlorination tetrachloroethene to ethane. Science 276, 1568-1571, 1997. https://doi.org/10.1126/science.276.5318.1568
  39. Maymo-Gatell, X., Nijenhuis, I. and Zinder, S. H. : Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". Environmental Science & Technology, 35, 516-521, 2001. https://doi.org/10.1021/es001285i
  40. McCarty, P. L. : Breathing with chlorinated solvents. Science 276, 1521-1522, 1997. https://doi.org/10.1126/science.276.5318.1521
  41. Mendoza-Sanchez, I., Autenrieth, R. L., McDonald, T. J. and Cunningham, J. A. : Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments. Biodegradation 21, 365-377, 2010. https://doi.org/10.1007/s10532-009-9307-6
  42. Muenzner, H. D., Clapp, L. W., Hozalski, R. M., Semmens, M. J. and Novak, P. J. : Dechlorination of PCE by mixed methanogenic cultures using hollow- fiber membranes. Bioremediation Journal, 6, 337-350, 2002. https://doi.org/10.1080/10889860290777657
  43. Noftsker, C. and Watwood, M. E. : Removal of tetrachloroethylene in an anaerobic column bioreactor. Applied Microbiology and Biotechnology, 48, 424-430, 1997. https://doi.org/10.1007/s002530051074
  44. Parsons, F., Wood, P. R. and Demarco, J. J. : Transformation of tetrachloroethane in microcosms and groundwater. Journal of the American Water Works Association, 76, 56-59, 1984.
  45. Parakash, S. M. and Gupta, S. K. : Biodegradation of tetrachloroethylene in upflow anaerobic sludge blanket reactor. Bioresource Technology, 72, 47-54, 2000. https://doi.org/10.1016/S0960-8524(99)90090-1
  46. Rosenthal, H., Adrian, L. and Steiof, M. : Dechlorination of PCE in the presence of $Fe^{0}$ enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55, 661-669, 2004. https://doi.org/10.1016/j.chemosphere.2003.11.053
  47. Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T. K. : Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stuzeri OX1. Nature Biotechnology 18, 775-778, 2000. https://doi.org/10.1038/77344
  48. Schmidt, J. E. and Ahring, B. K. : Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 49, 229-249, 1996.
  49. Scholz-Muramatsu, H., Szewzyk, R., Szewzyk, U. and Gaiser, S. : Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiology Letters, 66, 81-86, 1990. https://doi.org/10.1111/j.1574-6968.1990.tb03976.x
  50. Scholz-Muramatsu, H., Neumann, A., Messmer, M., Moore, E. and Diekert, G. : Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163, 48-56, 1995. https://doi.org/10.1007/BF00262203
  51. Sharma, O. K. and McCarty, P. L. : Isolation and characterization of a facultative aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Applied and Environmental Microbiology, 62, 761-765, 1996.
  52. Suyama, A., Iwakiri, R., Kai, K., Tokunaga, T., Sera, N. and Furukawa, K. : Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dechlorination of tetrachloroethene and polychloroethanes. Bioscience, Biotechnology, and Biochemistry, 65, 1474-1481, 2001. https://doi.org/10.1271/bbb.65.1474
  53. U.S. EPA : Superfund NPL Characterization Project: National Results. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA/540/8-91/069, 1991.
  54. U.S. EPA : National revised primary drinking water regulations, volatile synthetic organic chemicals in drinking water: advanced notice of proposed rulemaking. Federal Register, 47, 9349-9358, 1982.
  55. Vogel, T. M. and McCarty, P. L. : Biotransforination of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, 49, 1080-1083, 1985.
  56. Wild, A. P., Winkelbauer, W. and Leisinger, T. : Anaerobic dech1orination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6, 309-318, 1995. https://doi.org/10.1007/BF00695261
  57. Wu, W. M., Nye, J., Hickey, R. F. and Zeikus, J. G. : Dechlorination of PCE and TCE to ethene using an anaerobic microbial consortium. In: Bioremediation of chlorinated solvents. Hinchee, R.E., Leeson, A. and Semprini, L. (eds), Battelle, Columbus Richland, pp.45-52, 1995.
  58. Yamamoto, K., Fukushima, M., Kakutani, N. and Tsuruho, K. : Contamination of vinyl chloride in shallow urban river in Osaka, Japan. Water Research, 35, 561-566, 2001. https://doi.org/10.1016/S0043-1354(00)00278-5