DOI QR코드

DOI QR Code

Critical Review on Evaporative Loss of Semivolatile Aerosols during Sampling

  • Received : 2010.03.10
  • Accepted : 2010.05.11
  • Published : 2010.06.30

Abstract

Semivolatile aerosols exist as vapor and particles at the same time in room temperature and each phase has different intake and uptake mechanisms. This characteristic requires substantial consideration during exposure assessment of semivolatile aerosol. Some sampling methods for solid particles pose high possibility of evaporative loss during sampling. Therefore, when establishing sampling strategy for them, the factors affecting the phase distribution of semivolatile aerosol should be counted including semivolatile aerosol of interest and sampling methods used. Evaluation for phase distributions of semivolatile aerosols is also recommended. Metalworking fluids, pesticides, asphalt fumes, diesel exhaust, and environmental tobacco smoke are common health-related semivolatile aerosols in workplaces.

Keywords

References

  1. Bidleman, T. F. : Atmospheric processes - wet and dry deposition of organic-compounds are controlled by their vapor particle partitioning. Environmental Science & Technology, 22(4), 361-367, 1988. https://doi.org/10.1021/es00169a002
  2. Hawthorne, S., Miller, D., Louie, P., Butler, R. and Mayer, G. : Vapor-phase and particulate-associated pesticides and PCB concentrations in eastern North Dakota air samples. Journal of Environmental Quality, 25(3), 594-600, 1996.
  3. Norseth, T., Waage, J. and Dale, I. : Acute effects and exposure to organic compounds in road maintenance workers exposed to asphalt. American Journal of Industrial Medicine, 20(6), 737-744, 1991. https://doi.org/10.1002/ajim.4700200604
  4. CONCAWE: Health aspects of worker exposure to oil mists. Brussels: Conservation of Clean Air and Water in Europe, 1986.
  5. Lioy, P. and Daisey, J. : Airborne toxic elements and organic substances. Environmental Science & Technology, 20(1), 8-14, 1986. https://doi.org/10.1021/es00143a001
  6. Woskie, S., Smith, T., Hammond, S., Schenker, M., Garshick, E. and Speizer, F. : Estimation of the diesel exhaust exposures of railroad workers: I. Current exposures. American Journal of Industrial Medicine, 13(3), 381-394, 1988. https://doi.org/10.1002/ajim.4700130307
  7. Zaebst, D., Clapp, D., Blade, L., Marlow, D., Steenland, K., Hornung, R., Scheutzle, D. and Butler, J. : Quantitative determination of trucking industry workers exposures to diesel exhaust particles. American Industrial Hygiene Association Journal, 52(12), 529-541, 1991. https://doi.org/10.1080/15298669191365162
  8. Pankow, J. : A consideration of the role of gas/particle partitioning in the deposition of nicotine and other tobacco smoke compounds in the respiratory tract. Chemical Research in Toxicology, 14(11), 1465-1481, 2001. https://doi.org/10.1021/tx0100901
  9. Kriech, A., Kurek, J., Wissel, H., Osborn, L. and Blackburn, G. : Evaluation of worker exposure to asphalt paving fumes using traditional and nontraditional techniques. American Industrial Hygiene Association Journal, 63(5), 628-635, 2002. https://doi.org/10.1080/15428110208984749
  10. Hinds, W. : Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley-Interscience, New York, 1999.
  11. Volckens, J., Boundy, M., Leith, D. and Hands, D. : Oil mist concentration: a comparison of sampling methods. American Industrial Hygiene Association Journal, 60(5), 684-689, 1999. https://doi.org/10.1080/00028899908984492
  12. Leith, D., Leith, F. and Boundy, M. : Laboratory measurements of oil mist concentrations using filters and an electrostatic precipitator. American Industrial Hygiene Association Journal, 57(12), 1137-1141, 1996. https://doi.org/10.1080/15428119691014242
  13. Kim, S. W. and Raynor, P. C. : Experimental evaluation of oil mists using a semivolatile aerosol dichotomous sampler. Journal of Occupational and Environmental Hygiene, 7(4), 203-215, 2010. https://doi.org/10.1080/15459620903582244
  14. Simpson, A. and Wright, M. : Diffusive sampling of C7-C16 hydrocarbons in workplace air: uptake rates, wall effects and use in oil mist measurements. Annals of Occupational Hygiene, 52(4), 249-257, 2008. https://doi.org/10.1093/annhyg/men009
  15. Nordqvist, Y., Nilsson, U. and Colmsjo, A. : Investigation of a cylindrical chemosorptive denuder for sampling and phase separation of toluene diisocyanate aerosols. Analytical and Bioanalytical Chemistry, 382(5), 1294-1299, 2005. https://doi.org/10.1007/s00216-005-3248-7
  16. Soderholm, S. : Method of measuring the total deposition efficiency of volatile aerosols in humans. Journal of Aerosol Science, 22(7), 917-926, 1991. https://doi.org/10.1016/0021-8502(91)90084-U
  17. Lippmann, M. : Filters and filter holders. In Air Sampling Instruments for Evaluation of Atmospheric Contaminants, B.S. Cohen and C.S.J. McCammon (eds.), pp.281-284. Cincinnati: American Conference of Governmental Industrial Hygienists, 2001.
  18. US OSHA : Sampling and Analytical Methods. [Online] Available at http://www.osha.gov/dts/sltc/methods/index.html, Accessed on December 1, 2009.
  19. US NIOSH : Occupational Exposure to Metalworking Fluids. United States National Institute of Occupational Safety and Health, 1998.
  20. NRC: Environmental tobacco smoke - measuring exposures and assessing health effects. International Agency for Research on Cancer, 1986.
  21. Peters, A., Lane, D., Gundel, L., Northcott, G. and Jones, K. : A comparison of high volume and diffusion denuder samplers for measuring semivolatile organic compounds in the atmosphere. Environmental Science & Technology, 34(23), 5001-5006, 2000. https://doi.org/10.1021/es000056t
  22. Hering, S. : Impactors, cyclones, and other particle collectors. In Air Sampling Instruments for Evaluation of Atmospheric Contaminants, B.S. Cohen and C.S.J. McCammon (eds.), pp.315-354. Cincinnati: American Conference of Governmental Industrial Hygienists, 2001.
  23. Tolman, R., Reyerson, L., Brooks, A. and Smyth, H. : An electrical precipitator for analyzing smokes. Journal of the American Chemical Society, 41(4), 587-589, 1919. https://doi.org/10.1021/ja01461a009
  24. Bergstedt, B. : Application of the electrostatic precipitator to the measurement of radioactive aerosols. Journal of Scientific Instruments, 33, 142-148, 1956. https://doi.org/10.1088/0950-7671/33/4/305
  25. Wilkening, M. : A monitor for natural atmospheric radioactivity. Nucleonics, 10(6), 36-39, 1962.
  26. Decker, H., Buchanan, L., Frisque, D., Filler, M. and Dahlgren, C. : Advances in large-volume air sampling. Contamination Control, 8, 13-17, 1969.
  27. Mainelis, G., Adhikari, A., Willeke, K., Lee, S., Reponen, T. and Grinshpun, S. : Collection of airborne microorganisms by a new electrostatic precipitator. Journal of Aerosol Science, 33(10), 1417-1432, 2002. https://doi.org/10.1016/S0021-8502(02)00091-5
  28. Dixkens, J. and Fissan, H. : Development of an electrostatic precipitator for off-line particle analysis. Aerosol Science and Technology, 30(5), 438-453, 1999. https://doi.org/10.1080/027868299304480
  29. Kaupp, H. and Umlauf, G. : Atmospheric gas-particle partitioning of organic compounds: comparison of sampling methods. Atmospheric Environment, 26(13), 2259-2267, 1992. https://doi.org/10.1016/0960-1686(92)90357-Q
  30. Cardello, N., Volckens, J., Tolocka, M. P., Wiener, R. and Buckley, T. J. : Technical note: Performance of a personal electrostatic precipitator particle sampler. Aerosol Science and Technology, 36(2), 162-165, 2002. https://doi.org/10.1080/027868202753504029
  31. Volckens, J. and Leith, D. : Electrostatic sampler for semivolatile aerosols: Chemical artifacts. Environmental Science & Technology, 36(21), 4608-4612, 2002. https://doi.org/10.1021/es0207100
  32. Marple, V. : History of Impactors-The First 110 Years. Aerosol Science and Technology, 38(3), 247-292, 2004. https://doi.org/10.1080/02786820490424347
  33. Fuchs, N. : The Mechanics of Aerosols. New York: Pergamon Press, 1964.
  34. Marple, V. : Fundamental Study of Inertial Impactors: COO--1248-21, Minnesota Univ., Minneapolis. Particle Technology Lab., 1970.
  35. Marple, V. and Liu, B. : Characteristics of laminar jet impactors. Environmental Science and Technology, 8(7), 648-654, 1974. https://doi.org/10.1021/es60092a003
  36. Marple, V. and Liu, B. : On fluid flow and aerosol impaction in inertial impactors. Journal of Colloid and Interface Science, 53, 31-34, 1975. https://doi.org/10.1016/0021-9797(75)90031-4
  37. Zhang, X. and McMurry, P. : Theoretical analysis of evaporative losses from impactor and filter deposits. Atmospheric Environment, 21(8), 1779- 1789, 1987. https://doi.org/10.1016/0004-6981(87)90118-1
  38. Hounam, R. and Sherwood, R. : The cascade centripeter: a device for determining the concentration and size distribution of aerosols. American Industrial Hygiene Association Journal, 26(2), 122-131, 1965. https://doi.org/10.1080/00028896509342711
  39. Conner, W. : An inertial-type particle separator for collecting large samples. Journal of the Air Pollution Control Association, 16(1), 35-38, 1966. https://doi.org/10.1080/00022470.1966.10468438
  40. Dzubay, T. and Stevens, R. : Ambient air analysis with dichotomous sampler and x-ray fluorescence spectrometer. Environmental Science & Technology, 9(7), 663-668, 1975. https://doi.org/10.1021/es60105a011
  41. McFarland, A., Ortiz, C. and Bertch Jr, R. : Particle collection characteristics of a single-stage dichotomous sampler. Environmental Science & Technology, 12(6), 679-682, 1978. https://doi.org/10.1021/es60142a006
  42. Marple, V. and Chien, C. : Virtual impactors: a theoretical study. Environmental Science & Technology, 14(8), 976-985, 1980. https://doi.org/10.1021/es60168a019
  43. Loo, B. and Cork, C. : Development of high efficiency virtual impactors. Aerosol Science and Technology, 9(3), 167-176, 1988. https://doi.org/10.1080/02786828808959205
  44. Ravenhall, D., Forney, L. and Jazayeri, M. : Aerosol sizing with a slotted virtual impactor. Journal of Colloid and Interface Science, 1, 108-117, 1978.
  45. Forney, L., Ravenhall, D. and Lee, S. : Experimental and theoretical study of a two-dimensional virtual impactor. Environmental Science & Technology, 16(8), 492-497, 1982. https://doi.org/10.1021/es00102a013
  46. Sioutas, C., Koutrakis, P. and Burton, R. : A highvolume small cutpoint virtual impactor for separation of atmospheric particulate from gaseous pollutants. Particulate Science and Technology, 12(3), 207-221, 1994. https://doi.org/10.1080/02726359408906651
  47. Ding, Y. and Koutrakis, P. : Development of a dichotomous slit nozzle virtual impactor. Journal of Aerosol Science, 31(12), 1421-1431, 2000. https://doi.org/10.1016/S0021-8502(00)00048-3
  48. Masuda, H. and Nakasita, S. : Classification performance of a rectangular jet virtual impactor. Effect of nozzle width ratio of collection nozzle to acceleration jet. Journal of Aerosol Science, 19(2), 243-252, 1988. https://doi.org/10.1016/0021-8502(88)90226-1
  49. Chein, H. M. and Lundgren, D. A. : A virtual impactor with clean-air core for the generation of aerosols with narrow size distributions. Aerosol Science and Technology, 18(4), 376-388, 1993. https://doi.org/10.1080/02786829308959611
  50. Li, S. and Lundgren, D. : Effect of clean air core geometry on fine particle contamination and calibration of a virtual impactor. Aerosol Science and Technology, 27(5), 625-635, 1997. https://doi.org/10.1080/02786829708965501
  51. Noone, K., Ogren, J., Heintzenberg, J., Charlson, R. and Covert, D. : Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Science and Technology, 8(3), 235-244, 1988. https://doi.org/10.1080/02786828808959186
  52. Boulter, J. E., Cziczo, D. J., Middlebrook, A. M., Thomson, D. S. and Murphy, D. M. : Design and performance of a pumped counterflow virtual impactor. Aerosol Science and Technology, 40(11), 969-976, 2006. https://doi.org/10.1080/02786820600840984
  53. Piacitelli, G., Sieber, W., O Brien, D., Hughes, R., Glaser, R. and Catalano, J. : Metalworking fluid exposures in small machine shops: an overview. American Industrial Hygiene Association Journal, 62(3), 356-370, 2001. https://doi.org/10.1080/15298660108984638
  54. O Brien, D., Piacitelli, G., Sieber, W., Hughes, R. and Catalano, J. : An evaluation of short-term exposures to metalworking fluids in small machine shops. American Industrial Hygiene Association Journal, 62(3), 342-348, 2001. https://doi.org/10.1080/15298660108984636
  55. Verma, D., Shaw, D., Shaw, M., Julian, J., McCollin, S. and des Tombe, K. : An evaluation of analytical methods, air sampling techniques, and airborne occupational exposure of metalworking fluids. Journal of Occupational and Environmental Hygiene, 3(2), 53-66, 2006. https://doi.org/10.1080/15459620500471205
  56. Brown, R. and Monteith, L. : Gas and vapor sample collectors. In Air Sampling Instruments for Evaluation of Atmospheric Contaminants, B. Cohen and C.S.J. McCammon (eds.), pp. 421-424. Cincinnati: American Conference of Governmental Industrial Hygienist, 2001.
  57. Cohen, B., Brosseau, L., Fang, C., Bower, A. and Snyhder, C. : Measurement of air concentrations of volatile aerosols in paint spray applications. Applied Occupational and Environmental Hygiene, 7, 514-521, 1992. https://doi.org/10.1080/1047322X.1992.10390202
  58. Krieger, M. and Hites, R. : Diffusion denuder for the collection of semivolatile organic compounds. Environmental Science & Technology, 26(8), 1551-1555, 1992. https://doi.org/10.1021/es00032a009
  59. Durham, J., Wilson, W. and Bailey, E. : Application of an $SO_{2}$-denuder for continuous measurement of sulfur in submicrometric aerosols. Atmospheric Environment, 12(4), 883-886, 1978. https://doi.org/10.1016/0004-6981(78)90026-4
  60. Possanzini, M., Febo, A. and Liberti, A. : New design of a high-performance denuder for the sampling of atmospheric pollutants. Atmospheric Environment, 17(12), 2605-2610, 1983. https://doi.org/10.1016/0004-6981(83)90089-6
  61. Gunderson, E. and Anderson, C. : Collection device for separating airborne vapor and particulates. American Industrial Hygiene Association Journal, 48(7), 634-638, 1987. https://doi.org/10.1080/15298668791385327
  62. Koutrakis, P., Sioutas, C., Ferguson, S., Wolfson, J., Mulik, J. and Burton, R. : Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science & Technology, 27(12), 2497-2501, 1993. https://doi.org/10.1021/es00048a029
  63. Poon, W., Pui, D., Lee, C. and Liu, B. : A compact porous-metal denuder for atmospheric sampling of inorganic aerosols. Journal of Aerosol Science, 25(5), 923-934, 1994. https://doi.org/10.1016/0021-8502(94)90057-4
  64. Turpin, B., Liu, S., Podolske, K., Gomes, M., Eisenreich, S. and McMurry, P. : Design and evaluation of a novel diffusion separator for measuring gas/particle distributions of semivolatile organic compounds. Environmental Science & Technology, 27(12), 2441-2449, 1993. https://doi.org/10.1021/es00048a020
  65. Calvert, G. M., Ward, E., Schnorr, T. M. and Fine, L. J. : Cancer risks among workers exposed to metalworking fluids: A systematic review. American Journal of Industrial Medicine, 33(3), 282-292, 1998. https://doi.org/10.1002/(SICI)1097-0274(199803)33:3<282::AID-AJIM10>3.0.CO;2-W
  66. Rosenmann, K. D., Reily, M. J., Kalinowski, D. and Watt, F. : Occupational asthma and respiratory symptoms among workers exposed to machining fluids. In Industrial Metalworking Environment, pp. 143-146, 1995.
  67. Kreiss, K. and Cox-Ganser, J. : Metalworking fluidassociated hypersensitivity pneumonitis: a workshop summary. American Journal of Industrial Medicine, 32(4), 423-432, 1997. https://doi.org/10.1002/(SICI)1097-0274(199710)32:4<423::AID-AJIM16>3.0.CO;2-5
  68. Alomar, A. : Occupational skin-disease from cutting fluids. Dermatologic Clinics, 12(3), 537-546, 1994.
  69. Sprince, N., Palmer, J., Popendorf, W., Thorne, P., Selim, M., Zwerling, C. and Miller, E. : Dermatitis among automobile production machine operators exposed to metal-working fluids. American Journal of Industrial Medicine, 30(4), 421-429, 1998.
  70. Woskie, S., Smith, T., Hammond, S. and Hallock, M. : Factors affecting worker exposures to metalworking fluids during automotive component manufacturing. Applied Occupational and Environmental Hygiene, 9(9), 612-621, 1994. https://doi.org/10.1080/1047322X.1994.10388383
  71. Henriks-Eckerman, M., Suuronen, K., Jolanki, R., Riala, R. and Tuomi, T. : Determination of occupational exposure to alkanolamines in metal-working fluids. Annals of Occupational Hygiene, 51(2), 153-160, 2007.
  72. Garcia, A. : Occupational exposure to pesticides and congenital malformations: a review of mechanisms, methods, and results. American Journal of Industrial Medicine, 33(3), 1998.
  73. Miller, G. : Sustaining the Earth. Pacific Grove, California: Thompson Learning, Inc., 2004.
  74. IARC : Occupational Exposure in Insecticide Application, and Some Pesticides. Lyon, France: International Agency for Research on Cancer, 1991.
  75. US NIOSH : Method 5600 Organophosphorus Pesticides. In NIOSH Manual of Analytical Methods (NMAM), P.M. Eller and M. Cassinelli (eds.). Cincinnati, Ohio: DHHS (NIOSH) Publication 94-113, 1994.
  76. US NIOSH : Method 5601 Organonitrogen Pesticides. In NIOSH Manual of Analytical Methods (NMAM), P.M. Eller and M. Cassinelli (eds.). Cincinnati, Ohio: DHHS (NIOSH) Publication 94-113, 1998.
  77. US NIOSH : Method 5602 Chlorinated and Organonitrogen Herbicides (Air Sampling). In NIOSH Manual of Analytical Methods (NMAM), P.M. Eller and M. Cassinelli (eds.). Cincinnati, Ohio: DHHS (NIOSH) Publication 94-113, 1998.
  78. US NIOSH : Method 5502 Aldrin. In NIOSH Manual of Analytical Methods (NMAM), P.M. Eller and M. Cassinelli (eds.). Cincinnati, Ohio: DHHS (NIOSH) Publication 94-113, 1994.
  79. US NIOSH : Method 5514 Demeton. In NIOSH Manual of Analytical Methods (NMAM), P.M. Eller and M. Cassinelli (eds.). Cincinnati, Ohio: DHHS (NIOSH) Publication 94-113, 1994.
  80. US EPA : Reregistration Eligibility Decision for Thiram. Washington, DC: EPA, 2004.
  81. US ACGIH : TLVs and BEIs. Cincinnati: ACGIH, 2009.
  82. IARC : Polychlorinated Dibenzo-para-Dioxins and Polychlorinated Dibenzofurans. Lyon, France: International Agency for Research on Cancer, 1997.
  83. Jensen, T. and Hites, R. : Aromatic diesel emissions as a function of engine conditions. Analytical Chemistry, 55(4), 594-599, 1983. https://doi.org/10.1021/ac00255a003
  84. Kagawa, J. : Health effects of diesel exhaust emissions-a mixture of air pollutants of worldwide concern. Toxicology, 181, 349-353, 2002. https://doi.org/10.1016/S0300-483X(02)00461-4
  85. WHO : Environmental Health Criteria 171: Diesel fuel and exhaust emissions. Geneva, Switzerland: World Health Organization, 1996.
  86. US NIOSH : Health Effects of Occupational Exposure to Asphalt. United States National Institute of Occupational Safety and Health, 2000.
  87. Kitto, A., Pirbazari, M., Badriyha, B., Ravindran, V., Tyner, R. and Synolakis, C. : Emissions of volatile and semi-volatile organic compounds and particulate matter from hot asphalts. Environmental Technology, 18(2), 121-138, 1997. https://doi.org/10.1080/09593331808616520
  88. McClean, M., Rinehart, R., Ngo, L., Eisen, E., Kelsey, K. and Herrick, R. : Inhalation and dermal exposure among asphalt paving workers. Annals of Occupational Hygiene, 48(8), 663-671, 2004. https://doi.org/10.1093/annhyg/meh062
  89. Nielsen, T., Jorgensen, H., Larsen, J. and Poulsen, M. : City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Science of the Total Environment, 189, 41-49, 1996. https://doi.org/10.1016/0048-9697(96)05189-3
  90. Nebert, D., Jensen, N., Levitt, R. and Felton, J. : Toxic chemical depression of the bone marrow and possible aplastic anemia explainable on a genetic basis. Clinical Toxicology, 16(1), 99-122, 1980. https://doi.org/10.3109/15563658008989927
  91. Legraverend, C., Guenthner, T. and Nebert, D. : Importance of the route of administration for genetic differences in benzo [a] pyrene-induced in utero toxicity and teratogenicity. Teratology, 29(1), 1984.
  92. White, K. L. J., Lysy, H. H. and Holsapple, M. P. : Immunosuppression by polycyclic aromatic hydrocarbons: a structure-activity relationship in B6C3F1 and DBA/2 mice. Immunopharmacology, 9(3), 155-164, 1985. https://doi.org/10.1016/0162-3109(85)90011-6
  93. Bergman, T. A., Johnson, D. L., Boatright, D. T., Smallwood, K. G. and Rando, R. J. : Occupational exposure of nonsmoking nightclub musicians to environmental tobacco smoke. American Industrial Hygiene Association Journal, 57(8), 746-752, 1996. https://doi.org/10.1080/15428119691014611
  94. Aviado, D. M. : Cardiovascular disease and occupational exposure to environmental tobacco smoke. American Industrial Hygiene Association Journal, 57(3), 285-294, 1996. https://doi.org/10.1080/15428119691015025
  95. Scherer, G., Conze, C., Tricker, A. R. and Adlkofer, F. : Uptake of tobacco smoke constituents on exposure to environmental tobacco smoke (ETS). Journal of Clinical Investigation, 70(3-4), 352-367, 1992.
  96. Scherer, G., Conze, C., von Meyerinck, L., Sorsa, M. and Adlkofer, F. : Importance of exposure to gaseous and particulate phase components of tobacco smoke in active and passive smokers. International Archives of Occupational and Environmental Health, 62(6), 459-466, 1990. https://doi.org/10.1007/BF00379064