DOI QR코드

DOI QR Code

Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM

다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구

  • 이경훈 (부산대학교 정밀가공시스템) ;
  • 이정민 (한국기계연구원 부설 재료연구소) ;
  • 김병민 (부산대학교 기계공학부)
  • Published : 2010.04.01

Abstract

This paper describes multiparticle finite element model (MPFEM)-based powder compaction simulations performed to demonstrate the densification of compacted aluminum powders. A 2D MPFEM was used to explore the densification of a collection of aluminum particles with different average particle sizes under various ram speeds. Individual particles are discretized using a finite element mesh for a detailed description of contact mechanics. Porous aluminum powders with average particle sizes of $20\;{\mu}m$ and $3\;{\mu}m$ were compressed uniaxially at ram speeds of 5, 15, 30, and 60 mm/min by using an MTS servo-hydraulic tester. The slow ram speed was of great advantage to powder densification in low compaction force due to sufficient particle rearrangement. Owing to a decrease in the average particle size of aluminum, the compaction force increased.

본 논문에서는 알루미늄 분말의 치밀화 거동을 분석하기 위하여 다입자유한요소모델을 이용한 분말압축 해석방법을 제시하였다. 다입자유한요소모델을 이용하여 압축공정 동안 압축속도와 입자크기가 입자의 변형거동과 분말의 치밀화에 미치는 영향을 조사하였다. 유한요소해석결과는 평균입도 20, $3{\mu}m$의 알루미늄 분말에 대한 일축압축시험을 통해 검증되었다. 압축시험은 만능재료시험기(MTS)를 이용하였으며 해석과 동일하게 5와 15, 30, 60mm/min 압축속도에 대해 수행되었다. 입자직경이 감소할수록 입자간 마찰이 증가하기 때문에 압출하중은 증가하였다. 압축속도가 감소할수록 증가된 입자의 회전모멘트는 입자간의 이동과 분말의 치밀화에 기여하여 최종 분말의 상대밀도를 증가시킨다.

Keywords

References

  1. Lewis R.W, Jinka A.G.K, Gethin D.T, 1993, "Computer-Aided Simulation of Metal Powder Die Compaction Processes," Int. J. Powder Metall., Vol. 25, No. 6, pp. 287-293.
  2. Gethin D.T, Tran V.D, Lewis R.W, Ariffin A.K, 1994, "An Investigation of Powder Compaction Processes," Int. J. Powder Metall., Vol. 30, No. 4, pp.385-398.
  3. Cundall PA, Strack ODL, 1979, "A Discrete Numerical Model for Granular Assemblies," Geotechnique, Vol. 20, pp.47-65.
  4. Cambou, B, 1998, "Behavior of Granular Systems," Springer, CISM Courses and Lectures No. 385.
  5. Munjiza A, Owen DRJ, Bicanic N, 1995, "A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids," Eng. Comput., Vol. 12, pp.145-174. https://doi.org/10.1108/02644409510799532
  6. Heyliger P.R, McMeeking R.M, 2001, "Cold Plastic Compaction of Powders by a Network Model," J. Mech. Phys. Solids, Vol. 49, No. 9, pp.2031-2054. https://doi.org/10.1016/S0022-5096(01)00038-2
  7. Martin C. L, Bouvard D, Shima S, 2003, "Study of Particle Rearrangement During Powder Compaction by the Discrete Element Method," J. Mech. Phys. Solids, Vol. 51, No. 4, pp.667-693. https://doi.org/10.1016/S0022-5096(02)00101-1
  8. Redanz P, Fleck N. A, 2001, "The Compaction of a Random Distribution of Metal Cylinders by the Discrete Element Method," Acta Material, Vol. 49, p.4325. https://doi.org/10.1016/S1359-6454(01)00298-1
  9. Adam T. Procopio, Antonios Zavaliangos, 2005, "Simulation of Multi-Axial Compaction of Granular Media from Loose High Relative Densities," J. Mech. Phys. Solids, Vol. 53, pp.1523-1551. https://doi.org/10.1016/j.jmps.2005.02.007