DOI QR코드

DOI QR Code

Enantioselective Total Synthesis of (-)-Clavosolide A and B

  • 발행 : 2010.03.20

초록

Enantioselective total synthesis of (-)-clavosolide A and B was reported in full including the synthesis of proposed structure of (-)-clavosoldie A (1), revised structure of (-)-clavosoldie A (5), and revised structure of (-)-clavosoldie B (6). The relative and absolute stereochemistries of the natural products were confirmed unambiguously by comparing the optical rotation values and $^1H$ and $^{13}C$ NMR spectra of them.

키워드

참고문헌

  1. Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1-49. https://doi.org/10.1039/b006897g
  2. Fu, X.; Schmitz, F. J.; Kelly-Borges, M.; McCready, T. L.; Holmes, C. F. B. J. Org. Chem. 1998, 63, 7957-7963. https://doi.org/10.1021/jo981249q
  3. Rao, M. R.; Faulkner, D. J. J. Nat. Prod. 2002, 65, 386-388. https://doi.org/10.1021/np010495l
  4. Erickson, K. L.; Gustafson, K. R.; Pannell, L. K.; Beutler, J. A.; Boyd, M. R. J. Nat. Prod. 2002, 65, 1303-1306. https://doi.org/10.1021/np020193z
  5. Barry, C. S.; Bushby, N.; Charmant, J. P. H.; Elsworth, J. D.; Harding, J. R.; Willis, C. L. Chem. Commun. 2005, 40, 5097-5099.
  6. Chakraborty, T. K.; Reddy, V. R. Tetrahedron Lett. 2006, 47, 2099- 2102. https://doi.org/10.1016/j.tetlet.2006.01.130
  7. Yakambram, P.; Puranik, V. G.; Gurjar, M. K. Tetrahedron Lett. 2006, 47, 3781-3783. https://doi.org/10.1016/j.tetlet.2006.03.107
  8. Lee, D. H.; Son, J. B.; Kim, N. Y. Abstracts of Papers, 229th National Meeting of the American Chemical Society, San Diego, Mar 13-17, 2005; American Chemical Society: Washington, DC, 2005; ORGN-592.
  9. Son, J. B.; Kim, S. N.; Kim, N. Y.; Lee, D. H. Org. Lett. 2006, 8, 661-664. https://doi.org/10.1021/ol052851n
  10. Son, J. B.; Kim, S. N.; Kim, N. Y.; Lee, D. H. Org. Lett. 2006, 8, 3411. https://doi.org/10.1021/ol061172p
  11. III Smith, A. B.; Simov, V. Org. Lett. 2006, 8, 3315-3318. https://doi.org/10.1021/ol0611752
  12. Barry, C. S.; Elsworth, J. D.; Seden, P. T.; Bushby, N.; Harding, J. R.; Alder, R. W.; Willis, C. L. Org. Lett. 2006, 8, 3319-3322. https://doi.org/10.1021/ol0611705
  13. Chakraborty, T. K.; Reddy, V. R.; Chattopadhyay, A. K. Tetrahedron Lett. 2006, 47, 7435-7438. https://doi.org/10.1016/j.tetlet.2006.08.055
  14. Son, J. B.; Hwang, M. H.; Lee, W.; Lee, D. H. Org. Lett. 2007, 9, 3897-3900. https://doi.org/10.1021/ol7015115
  15. Paterson, I.; Cumming, J. G.; Smith. J. D.; Ward, R. A. Tetrahedron Lett. 1994, 35, 441. https://doi.org/10.1016/0040-4039(94)85075-5
  16. Paterson, I.; Smith, J. D. Tetrahedron Lett. 1993, 34, 5351. https://doi.org/10.1016/S0040-4039(00)73995-5
  17. Paterson, I.; Goodman. J. M.; Lister. M. A.; Schumann. R. C.; McClure. C. K.; Norcross. R. D. Tetrahedron 1990, 46, 4663-4684. https://doi.org/10.1016/S0040-4020(01)85588-5
  18. Bernardi, A.; Capelli, A. M.; Gennari C. J. Org. Chem. 1990, 55, 3576-3581. https://doi.org/10.1021/jo00298a038
  19. Mosher, H. S.; Dale, J. A. J. Am. Chem. Soc. 1973, 75, 512.
  20. Mosher, H. S.; Dale, J. A.; Dull, D. L. J. Org. Chem. 1969, 34, 2543. https://doi.org/10.1021/jo01261a013
  21. Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. Org. React. 1972, 20, 1.
  22. Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966-2967. https://doi.org/10.1021/jo00115a008
  23. Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651-2652. https://doi.org/10.1021/ja00085a068
  24. Charette, A. B.; Prescott, S.; Brochu, C. J. Org. Chem. 1995, 60, 1081-1083. https://doi.org/10.1021/jo00109a049
  25. Charette, A. B.; Lacasse, M. C. Org. Lett. 2002, 4, 3351-3353. https://doi.org/10.1021/ol0264051
  26. Abdel-Magid, A.; Pridgen, L. N.; Eggleston, D. S.; Lantos, I. J. Am. Chem. Soc. 1986, 108, 4595. https://doi.org/10.1021/ja00275a054
  27. Koch, S. C.; Chamberlin, A. R. J. Org. Chem. 1993, 58, 2725. https://doi.org/10.1021/jo00062a013
  28. Evans, D. A.; Ann E. Weber. J. Am. Chem. Soc. 1987, 109, 7151. https://doi.org/10.1021/ja00257a041
  29. Todd, K. J.; Robert, A. R.; Richard, D.; Sander, G. M. J. Am. Chem. Soc. 1990, 112, 2998. https://doi.org/10.1021/ja00164a023
  30. Evans, D. A.; Eric, B. S.; Ann, E. W.; Robin, E. C. Tetrahedron Lett. 1987, 26, 39.
  31. David, C.; Xian-Yun, J.; Milan, B. Tetrahedron 1997, 53, 7127. https://doi.org/10.1016/S0040-4020(97)00412-2
  32. Hosakawa, T.; Yamanaka, T.; Itotani, M.; Murahashi, S. I. J. Org. Chem. 1995, 60, 6159-6167. https://doi.org/10.1021/jo00124a032
  33. Cossy, J.; Bauer, D.; Bellosta, V. Tetrahedron 2002, 58, 5909-5922. https://doi.org/10.1016/S0040-4020(02)00555-0
  34. Paterson, I.; Flarence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N. J. Am. Chem. Soc. 2001, 123, 9535-9544. https://doi.org/10.1021/ja011211m
  35. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U.-H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461- 5464.
  36. Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287-11314. https://doi.org/10.1021/ja00104a010
  37. Paterson, I.; Florence, G. J. Tetrahedron Lett. 2000, 41, 6935-6939. https://doi.org/10.1016/S0040-4039(00)01165-5
  38. Bernardi, A.; Gennari, C.; Goodman, J. M.; Paterson, I. Terahedron: Asymmetry 1995, 6, 2613-2636. https://doi.org/10.1016/0957-4166(95)00343-N
  39. Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033-10046. https://doi.org/10.1021/ja002356g
  40. Evans, D. A.; Cote, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10893-10898. https://doi.org/10.1021/ja027640h
  41. Rychnovsky, S. D.; Rogers, B.; Yang, D. J. Org. Chem. 1993, 58, 3511-3515. https://doi.org/10.1021/jo00065a011
  42. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3572. https://doi.org/10.1021/ja00219a035
  43. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482. https://doi.org/10.1021/jo00406a041
  44. Mancuso, A. J.; Swern, D. Synthesis 1981, 165-196.
  45. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183-2186. https://doi.org/10.1016/S0040-4039(01)80205-7
  46. Evans, D. A.; Ripin, D. H.; Halstead, D. P.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 6816-6826. https://doi.org/10.1021/ja990789h
  47. Vakalopoulos, A.; Hoffmann, H.M.R. Org. Lett. 2001, 3, 177-180. https://doi.org/10.1021/ol006737a
  48. Micalizio, G. C.; Pinchuk, A. N.; Roush, W. R. J. Org. Chem. 2000, 65, 8730-8736. https://doi.org/10.1021/jo001236o
  49. Bhattacharjee, A.; Soltani, O.; De Brabander, J. K. Org. Lett. 2002, 4, 481-484. https://doi.org/10.1021/ol016938u
  50. Schneider, C.; Schuffehauer, A. Eur. J. Org. Chem. 2000, 65, 73-82.
  51. Edmunds, A. J. F.; Trueb W. Tetrahedron Lett. 1997, 38, 1009-1012. https://doi.org/10.1016/S0040-4039(96)02483-5
  52. White, J. D.; Blakemore, P. R.; Browder, C. C.; Hong, J.; Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J. J. Am. Chem. Soc. 2001, 123, 6816- 6826.
  53. Schneider, C.; Schuffenhauer, A. Eur. J. Org. Chem. 2000, 73.
  54. Smith, N. D.; Kocienski, P. J.; Street, S. D. A. Synthesis 1996, 652.
  55. Bhattacharjee, A.; Soltani, O.; Brabander, J. K. D. Org. Lett. 2002, 4, 481. https://doi.org/10.1021/ol016938u
  56. Fujiwara, K.; Amano, S.; Oka, T.; Murai, A. Chemistry Lett. 1994, 2147.
  57. Evans, D. A.; Carreira, E. M. Tetrahedron Lett. 1990, 31, 4703 https://doi.org/10.1016/S0040-4039(00)97711-6
  58. Vakalopoulos, A.; Hoffmann, H. M. R. Org. Lett. 2001, 3, 177- 180. https://doi.org/10.1021/ol006737a
  59. Edmunds, A. J. F.; Trueb, W. Tetrahedron Lett. 1997, 38, 1009-1012. https://doi.org/10.1016/S0040-4039(96)02483-5
  60. Wang, H.; Sun, L.; Glazebnik, S.; Zhao, K. Tetrahedron Lett. 1995, 36, 2953-2956 https://doi.org/10.1016/0040-4039(95)00446-J
  61. Schraml, J.; Petrakova, E.; Pihar, O.; Hirsch, J.; Chvalovsky, V. Chem. Commun. 1983, 48, 1829-1841.
  62. Inanaga, J.; Hirata, K.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993. https://doi.org/10.1246/bcsj.52.1989
  63. Schmidt, R. R. Angew. Chem. Int. Ed. Engl. 1986, 25, 212-235. https://doi.org/10.1002/anie.198602121
  64. Jung, K. H.; Muller, M.; Schmidt, R. R. Chem. Rev. 2000, 100, 4423-4442. https://doi.org/10.1021/cr990307k
  65. Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503-1531. https://doi.org/10.1021/cr00020a006
  66. Schmidt, R. R.; Michel, J. Angew. Chem. Int. Ed. Engl. 1980, 19, 731-732. https://doi.org/10.1002/anie.198007311
  67. Furstner, A.; Albert, M.; Mlynarski, J.; Matheu, M.; DeClercq, E. J. Am. Chem. Soc. 2003, 125, 13132- 13142. https://doi.org/10.1021/ja036521e
  68. Arai, I.; Mori, A.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 8254-8256. https://doi.org/10.1021/ja00312a072
  69. Barrett, A. G. M.; Doubleday, W. W.; Kasdorf, K.; Tustin, G. J. J. Org. Chem. 1996, 61, 3280-3288. https://doi.org/10.1021/jo960054k
  70. Baldwin, J. E.; Bonaorsi, S., Jr. J. Am. Chem. Soc. 1993, 115, 10621-10627. https://doi.org/10.1021/ja00076a021
  71. Armstrong, R. W.; Maurer, K. W. Tetrahedron Lett. 1995, 36, 357- 360. https://doi.org/10.1016/0040-4039(94)02269-H
  72. Mori, A.; Arai, I.; Yamamoto, H. Tetrahedron 1986, 42, 6447-6458. https://doi.org/10.1016/S0040-4020(01)88107-2
  73. Kazuta, Y.; Matsuda, A.; Shuto, S. J. Org. Chem. 2002, 67, 1669-1677. https://doi.org/10.1021/jo010852x
  74. Benedetti, F.; Berti, F.; Risaliti, A. Tetrahedron Lett. 1993, 34, 6443-6446. https://doi.org/10.1016/0040-4039(93)85066-6
  75. Shuto, S.; Ono, S.; Hase, Y.; Kamiyama, N.; Takada, H.; Yamasihita, K.; Matsuda, A. J. Org. Chem. 1996, 61, 915-923. https://doi.org/10.1021/jo9518056
  76. Daumas, M.; Vo-Quang, Y.; Le Goffic, F. Synthesis 1989, 64- 65.
  77. Schmid, C. R.; Bryant, J. D. Org. Syn. Coll. Vol. 9, p 450.
  78. Hong, J. H.; Oh, C. H.; Cho, J. H. Tetrahedron Lett. 2003, 59, 6103- 6108. https://doi.org/10.1016/S0040-4020(03)00986-4
  79. Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439. https://doi.org/10.1021/jo00354a003
  80. Akiyama, S.; Hooz, J. Tetrahedron Lett. 1973, 14, 4115-4118. https://doi.org/10.1016/S0040-4039(01)87126-4
  81. Brown, H. C.; Jadhav, P. K.; Perumal, P. T. Tetrahedron Lett. 1984, 25, 5111-5114. https://doi.org/10.1016/S0040-4039(01)81537-9
  82. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1980, 45, 849- 856. https://doi.org/10.1021/jo01293a018
  83. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1982, 47, 276-280. https://doi.org/10.1021/jo00341a018
  84. Smith, A. B.; Simov, V. Org. Lett. 2006, 8, 3315-3318. https://doi.org/10.1021/ol0611752
  85. Barry, C. S.; Elsworth, J. D.; Seden, P. T.; Bushby, N.; Harding, J. R.; Alder, R. W.; Willis, C. L. Org. Lett. 2006, 8, 3319-3322. https://doi.org/10.1021/ol0611705
  86. Chakraborty, T. K.; Reddy, V. R.; Chattopadhyay, A. K. Tetrahedron Lett. 2006, 47, 7435-7438. https://doi.org/10.1016/j.tetlet.2006.08.055
  87. Kochetkov, N. K.; Khorlin, A. J.; Bochkov, A. F. A new method of glycosylation Tetrahedron 1967, 23, 693-707. https://doi.org/10.1016/0040-4020(67)85014-2
  88. Kochetkov, N. K.; Bochkov, A. F.; Sokolovskaya, T. A.; Snyatkova, V. J. Modifications of the orthoester method of glycosylation Carbohydr. Res. 1971, 16, 17-27. https://doi.org/10.1016/S0008-6215(00)86094-2
  89. Kochetkov, N. K.; Backinowsky, L. V.; Tsvetkov, Y. E. Sugar thio orthoesters as glycosylating agents Tetrahedron Lett. 1977, 41, 3681-3684.
  90. Hudson, C. S.; Johnson, J. M. J. Am. Chem. Soc. 1915, 37, 2748- 2753. https://doi.org/10.1021/ja02177a023
  91. Kiso, M.; Hasegaqa, A. Carbohydrate Research 1976, 52, 95-101. https://doi.org/10.1016/S0008-6215(00)85950-9
  92. Zhang, J.; Zhu, Y.; Kong, F. Carbohydrate Research 2001, 336, 229-235. https://doi.org/10.1016/S0008-6215(01)00258-0
  93. Mach, M.; Schlueter, U.; Mathew, F.; Reid, B. F.; Hazen, K. C. Tetrahedron 2002, 58, 7345-7354. https://doi.org/10.1016/S0040-4020(02)00671-3
  94. Suhr, R.; Thiem, J. J. Carbohydr. Chem. 2004, 23, 261-276. https://doi.org/10.1081/CAR-200029997
  95. Czifrak, K.; Hadady, Z.; Docsa, T.; Gergely, P.; Schmidt, J.; Wessjohannd, L; Somsak, L. Carbohydr. Res. 2006, 341, 947-956. https://doi.org/10.1016/j.carres.2006.03.002
  96. Chu, J.; Guo, H.; Wang, S. Tianjin Daxue Xuebao 2004, 37, 434- 437.
  97. Schmidt, R. R.; Michel, J. Angew. Chem. Int. Ed. Engl. 1980, 19, 731-732. https://doi.org/10.1002/anie.198007311
  98. Schmidt, R. R.; Behrendt, M.; Toepfer, A. Synlett 1990, 694-696.
  99. Furstner, A.; Albert, M.; Mlynarski, J.; Matheu, M.; Declercq, E. J. Am. Chem. Soc. 2003, 125, 13132-13142. https://doi.org/10.1021/ja036521e

피인용 문헌

  1. Tandem diastereo- and enantioselective preparation of aryl and alkyl cyclopropyl carbinols with three adjacent stereocenters using perhydrobenzoxazines and diethylzinc vol.12, pp.2, 2014, https://doi.org/10.1039/C3OB41797B
  2. Tandem Allylboration-Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (−)-Clavosolide A vol.128, pp.7, 2016, https://doi.org/10.1002/ange.201511140
  3. Tandem Allylboration-Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (−)-Clavosolide A vol.55, pp.7, 2016, https://doi.org/10.1002/anie.201511140
  4. Appreciation of symmetry in natural product synthesis vol.34, pp.12, 2017, https://doi.org/10.1039/C7NP00045F
  5. ChemInform Abstract: Enantioselective Total Synthesis of (-)-Clavosolide A and B. vol.41, pp.31, 2010, https://doi.org/10.1002/chin.201031208
  6. Asymmetric synthesis of the C(6-18) bis(tetrahydropyran)spiroacetal fragment of the lituarines vol.67, pp.27, 2011, https://doi.org/10.1016/j.tet.2011.03.116
  7. Samarium Iodide-Promoted Asymmetric Reformatsky Reaction of 3-(2-Haloacyl)-2-oxazolidinones with Enals vol.84, pp.16, 2010, https://doi.org/10.1021/acs.joc.9b01219
  8. Direct Catalytic Asymmetric Synthesis of Disubstituted 4-Oxocyclohexanecarbaldehydes from Acetone and Cinnamaldehyde Derivatives vol.23, pp.5, 2010, https://doi.org/10.1021/acs.orglett.0c04277