DOI QR코드

DOI QR Code

Comparison of Gene Expression between Cumulus Oocyte Complexes and Naked Oocytes by Suppression Subtractive Hybridization in Swine

  • Xiang, Zhi Feng (Department of Animal Science, Henan Institute of Science and Technology) ;
  • Zhang, Jin Zhou (Department of Animal Science, Henan Institute of Science and Technology) ;
  • Li, Xue Bin (Department of Animal Science, Henan Institute of Science and Technology) ;
  • Xie, Hong Bin (Department of Animal Science, Henan Institute of Science and Technology) ;
  • Wang, Qing Hua (Department of Animal Science, Henan Institute of Science and Technology)
  • Received : 2009.04.22
  • Accepted : 2009.08.21
  • Published : 2010.01.01

Abstract

In the antral follicle phase, several layers of cumulus cells surround the oocyte and play an important support and regulation role in oocyte development and maturation via intercellular communications and interactions between oocytes and cumulus cells. However, information on stage specific gene expression in swine during the phase is not well understood. To investigate the function of cumulus cells during in vitro maturation of porcine oocytes and gene expression, suppression subtractive hybridization (SSH) was performed to screen genes that were differentially expressed between cumulus-oocyte complexes (COCs) and naked oocytes (NOs). Utilizing mRNAs from in vitro maturation oocytes, a SSH cDNA library from COCs as the tester and NOs as the driver was constructed. The SSH cDNA library was then screened using dot blot analysis. Results showed that a total of 70 clones randomly selected from the library were differentially expressed. Among these, 41 exhibited high homology to known genes and 11 were novel expressed sequences tags (ESTs). Four differentially expressed genes, including bfgf, sprouty 2, egr and btc, were further studied by real time quantitative PCR; results confirmed an increased expression of respective mRNA in COCs compared with NOs, which suggests that these factors may play an important role in oocyte development and maturation.

Keywords

References

  1. Aafke, P. A., P. M. Joep, C. M. John, P. M. Alphons, L. H. Johannes, Evers and A. Y. Torik. 2008. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. MHR-Basic Sci. of Reprod. Medicine. 14:157-168
  2. Ajay, P. S. A., R. Sarvesh, D, Sachinandan, T. Manish, L. G. Surender and K. D. Tirtha. 2007. Expression stability of two housekeeping genes (18S rRNA and G3PDH) during in vitro maturation of follicular oocytes in buffalo (Bubalus bubalis). Anim. Reprod. Sci. 103:164-171 https://doi.org/10.1016/j.anireprosci.2007.04.012
  3. Ashkenazi, H., X. Cao, S. Motola, M. Popliker, M. Conti and A. Tsafriri. 2005. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146:77-84 https://doi.org/10.1210/en.2004-0588
  4. Bodin, L., E. Di Pasquale, S. Fabre, M. Bontoux, P. Monget, L. Persani and P. Mulsant. 2007. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 148:393-400 https://doi.org/10.1210/en.2006-0764
  5. Brankin, V., R. L. Quinn, R. Webb and M. G. Hunter. 2005b. BMP-2 and -6 modulate porcine theca cell function alone and co-cultured with granulosa cells. Domest. Anim. Endocrinol. 29:593-604 https://doi.org/10.1016/j.domaniend.2005.04.001
  6. Brower, P. T. and R. M. Schultz. 1982. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev. Biol. 90:144-153 https://doi.org/10.1016/0012-1606(82)90219-6
  7. Buccione, R., A. C. Schroeder and J. J. Eppig. 1990. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43:543-547 https://doi.org/10.1095/biolreprod43.4.543
  8. Carabatsos, M. J., C. Sellitto, D. A. Goodenough and D. F. Albertini. 2000. Oocyte-granulosa cell heterogonous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226:167-179 https://doi.org/10.1006/dbio.2000.9863
  9. Chen, A. Q., S. D. Yu, Z. G. Wang, Z. R. Xu and Z. G. Yang. 2009. Stage specific expression of bone morphogenetic protein type I: effects of follicle-stimulating hormone on ovine antral follicles. Anim. Reprod. Sci. 111:391-399 https://doi.org/10.1016/j.anireprosci.2008.03.011
  10. Conti, M., M. Hsieh, J. Y. Park and Y. Q. Su. 2006. Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 20:715-723 https://doi.org/10.1210/me.2005-0185
  11. Downs, S. M. 2001. A gap-junction-mediated signal, rather than an external paracrine factor, predominates during meiotic induction in isolated mouse oocytes. Zygote 9:71-82
  12. Downs, S. M. and M. Hunzicker-Dunn. 1995. Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte-cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Dev. Biol. 172:72-85 https://doi.org/10.1006/dbio.1995.0006
  13. Dragovic, R. A., L. J. Ritter, S. J. Schulz, F. Amato, Thompson, T. David, Armstrong and B. G. Robert. 2007. Oocyte-secreted factor activation of SMAD 2/3 signaling enables initiation of mouse cumulus cell expansion. Biol. Reprod. 76:848-857 https://doi.org/10.1095/biolreprod.106.057471
  14. Diatchenko, L., Y. F. C. Lau, A. P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov and P. D. Siebert. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025-6030 https://doi.org/10.1073/pnas.93.12.6025
  15. Elvin, J. A., C. N. Yan and M. M. Matzuk. 2000. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E- 2/EP2 receptor pathway. Proc. Natl. Acad. Sci. USA 97:10288-10293 https://doi.org/10.1073/pnas.180295197
  16. Eppig, J. J., K. Wigglesworth and F. L. Pendola. 2002. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc. Natl. Acad. Sci. USA 99:2890-2894 https://doi.org/10.1073/pnas.052658699
  17. Fayad, T., V. Levesque, J. Sirois, D. W. Silversides and J. G. Lussier. 2004. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol. Reprod. 70:523-533 https://doi.org/10.1095/biolreprod.103.021709
  18. Galloway, S. M., K. P. McNatty, L. M. Cambridge, M. P. E. Laitinen, S. Juengel, okiranta, R. J. McLaren, K. Luiro, K. G. Dodds, G. W. Montgomery, A. E. Beattie, G. H. Davis and O. Ritvos. 2000. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25:279-283 https://doi.org/10.1038/77033
  19. Hacohen, N., S. Kramer, D. Sutherland, Y. Hiromi and M. A. Krasnow. 1998. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the drosophila airways. Cell 92:253-263 https://doi.org/10.1016/S0092-8674(00)80919-8
  20. Hyttel, P., T. Fair, H. Callesen and T. Greve. 1997. Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47:23-32 https://doi.org/10.1016/S0093-691X(96)00336-6
  21. Kawamura, K., N. Sato, J. Fukuda, H. Kodama, J. Kumagai, H. Tanikawa, A. Nakamura, Y. Honda, T. Sato and T. Tanaka. 2003. Ghrelin inhibits the development of mouse preimplantation embryos in-vitro. Endocrinology 144:2623-2633 https://doi.org/10.1210/en.2003-0033
  22. Khan, S. M, R. H. Oliver and J. Yeh. 2005. Epidermal growth factor receptor inhibition by tyrphostin 51 induces apoptosis in luteinized granulosa cells. J. Clin. Endocrinol. Metab. 90:469-473 https://doi.org/10.1210/jc.2004-0454
  23. Kilsoo, J., Y. K. Eun, C. T. Jin, K. J. Dong, S. K. Cho, J. H. Kim, H. Y. Lee, K. Z. Riu, S. G. Cho and S. P. Park. 2008. Survivin protein expression in bovine follicular oocytes and their in vitro developmental competence. Anim. Reprod. Sci. 108:319-333 https://doi.org/10.1016/j.anireprosci.2007.09.003
  24. Matzuk, M. M., K. H. Burns, M. M. Viveiros and J. J. Eppig. 2002. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178-2180 https://doi.org/10.1126/science.1071965
  25. Meng, Q. X., H. J. Gao, C. M. Xu, M. Y. Dong, X. Sheng, J. Z. Sheng and H. F. Huang. 2008. Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell. Physiol. Biochem. 21:123-128 https://doi.org/10.1159/000113754
  26. Pakarainen, T., F. P. Zhang, L. Nurmi, M. Poutanen and I. Huhtaniemi. 2005. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse Graafian follicles. Mol. Endocrinol. 19:2591-2602 https://doi.org/10.1210/me.2005-0075
  27. Pei, D. S., Y. H. Sun, S. P. Chen, Y. P. Wang, W. Hu and Z. Y. Zhu. 2007. Zebra fish GAPDH can be used as a reference gene for expression analysis in cross-subfamily cloned embryos. Anal. Biochem. 363:291-293 https://doi.org/10.1016/j.ab.2006.12.005
  28. Robert, C., F. L. Barnes, I. Hue and M. A. Sirard. 2000. Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes. Mol. Reprod. Dev. 57:167-175 https://doi.org/10.1002/1098-2795(200010)57:2<167::AID-MRD8>3.0.CO;2-P
  29. Schoevers, E. J., B. Colenbrander and B. A. Roelen. 2007. Developmental stage of the oocyte during antral follicle growth and cumulus investment determines in vitro embryo development of sow oocytes. Theriogenology 67:1108-1122 https://doi.org/10.1016/j.theriogenology.2006.12.009
  30. Shimizu, T., M. Yokoo, Y. Miyake, H. Sasada and E. Sato. 2004. Differential expression of bone morphogenetic protein 4-6 (BMP-4, -5 and -6) and growth differentiation factor-9 (GDF-9) during ovarian development in neonatal pigs. Domest. Anim. Endocrinol. 27:397-405 https://doi.org/10.1016/j.domaniend.2004.04.001
  31. Sicinski, P., J. L. Donaher, Y. Geng, S. B. Parker, H. Gardner, M. Y. Park, R. Robker, J. S. Richards, L. K. Maginnis, J. D. Biggers, J. J. Eppig, R. T. Bronson, S. J. Elledge and R. A. Weinberg. 1996. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384:470-474 https://doi.org/10.1038/384470a0
  32. Sirard, M. A. 2001. Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55:1241-1254 https://doi.org/10.1016/S0093-691X(01)00480-0
  33. Vanderhyden, B. C., E. E. Telfer and J. Eppig. 1992. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod. 46:1196-1204 https://doi.org/10.1095/biolreprod46.6.1196
  34. Vozzi, C., A. Formenton, A. Chanson, A. Senn, R. Sahli, P. Shaw, P. Nicod, M. Germond and J. A. Haefliger. 2001. Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction 122:619-628 https://doi.org/10.1530/rep.0.1220619
  35. Ward, F., B. Enright, D. Rizos, M. Boland and P. Lonergan. 2002. Optimization of in vitro bovine embryo production: Effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57:2105-2117 https://doi.org/10.1016/S0093-691X(02)00696-9
  36. Wassarman, P. M. and D. F. Albertini. 1994. The mammalian ovum. In: The physiology of reproduction (E. Knobil and J. D. Neill), 2nd ed. Raven Press, New York. pp. 79-122
  37. Zeng, F. and R. M. Schultz. 2003. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryospecific genes. Biol. Reprod. 68:31-39 https://doi.org/10.1095/biolreprod.102.007674
  38. Zhang, L., S. Jiang, P. J. Wozniak, X. Yang and R. A. Godke. 1995. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40:338-344 https://doi.org/10.1002/mrd.1080400310

Cited by

  1. miR-215 Targeting Novel Genes EREG , NIPAL 1 and PTPRU Regulates the Resistance to E.coli F18 in Piglets vol.11, pp.9, 2010, https://doi.org/10.3390/genes11091053