POSITIVE SOLUTIONS OF NONLINEAR m-POINT BVP FOR AN INCREASING HOMEOMORPHISM AND POSITIVE HOMOMORPHISM ON TIME SCALES

  • Han, Wei (Department of Mathematics, North University of China) ;
  • Jin, Zhen (Department of Mathematics, North University of China) ;
  • Zhang, Guang (School of Science, Tianjin University of Commerce)
  • 투고 : 2009.09.24
  • 심사 : 2009.10.27
  • 발행 : 2010.09.30

초록

In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $({\phi}(u^{\Delta}))^{\nabla}+a(t)f(t,\;u(t))=0$, t $\in$ (0, T), $u(0)=\sum\limits^{m-2}_{i=1}a_iu(\xi_i)$, $\phi(u^{\Delta}(T))=\sum\limits^{m-2}_{i=1}b_i{\phi}(u^{\Delta}(\xi_i))$, where $\phi$ : R $\rightarrow$ R is an increasing homeomorphism and positive homomorphism and ${\phi}(0)=0$. In [27], we obtained the existence results of the above problem for an increasing homeomorphism and positive homomorphism with sign changing nonlinearity. The purpose of this paper is to supplement with a result in the case when the nonlinear term f is nonnegative, and the most point we must point out for readers is that there is only the p-Laplacian case for increasing homeomorphism and positive homomorphism due to the sign restriction. As an application, one example to demonstrate our results are given.

키워드

참고문헌

  1. R.P. Agarwal, D. O'Regan, Nonlinear boundary value Problems on time scales, Nonl. Anal. 44 (2001), 527-535. https://doi.org/10.1016/S0362-546X(99)00290-4
  2. R.P. Agarwal, M. Bohner, P. Rehak, Half-linear dynamic equations, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, Kluwer Academic Publishers, Dordrecht, 2003, p. 1-57.
  3. D.R. Anderson, Solutions to second-order three-point problems on time scales, J. Differ. Equ. Appl. 8 (2002), 673-688. https://doi.org/10.1080/1023619021000000717
  4. D.R. Anderson, R. Avery, J. Henderson, Existence of solutions for a one-dimensional p-Laplacian on time scales, J. differen. Equ. Appl. 10 (2004), 889-896. https://doi.org/10.1080/10236190410001731416
  5. F.M. Atici, G.Sh. Gnseinov, On Green'n functions and positive solutions for boundary value problems on time scales, J. Comput. Anal. Math. 141 (2002), 75-99. https://doi.org/10.1016/S0377-0427(01)00437-X
  6. B. Aulbach, L. Neidhart, Integration on measure chain, in: proc. of the Sixth Int. Conf. on Difference Equations, CRC, BocaRaton, Fl, 2004, pp. 239-252.
  7. M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Cambridge, MA, 2001.
  8. M. Bohner, A. Peterson, Advances in Dynamic Equations on time scales, Birkhauser Boston, Cambridge, MA, 2003.
  9. J.J. Dacunha, J.M. Davis, P.K. Singh, Existence results for singular three point boundary value problems on time scales, J. Math. Anal. Appl. 295 (2004), 378-391. https://doi.org/10.1016/j.jmaa.2004.02.049
  10. H.Y. Feng, W.Ge, M. Jiang, Multiple positive solutions for m-point boundary-value problems with a one-dimensional p-Laplacian, Nonlinear Anal. 68 (2008), 2269-2279. https://doi.org/10.1016/j.na.2007.01.052
  11. D. Guo, V. Lakshmikanthan, Nonlinear problems in Abstract Cones, Academic Press, San Diego, 1988.
  12. Z.M. He, Double positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales, J. Comput. Appl. Math. 182 (2005), 304-315. https://doi.org/10.1016/j.cam.2004.12.012
  13. Z.M. He, Triple positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales, J. Math. Anal. Appl. 321 (2006), 911-920. https://doi.org/10.1016/j.jmaa.2005.08.090
  14. J.P. Sun, W.T. Li, Existence and nonexistence of positive solutions for second-order time scale systems, Nonlinear Anal. 68 (2008), 3107-3114. https://doi.org/10.1016/j.na.2007.03.003
  15. K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc. 63 (2001), 690-704. https://doi.org/10.1112/S002461070100206X
  16. S.H. Liang, J.H. Zhang, The existence of countably many positive solutions for nonlinear singular m-point boundary-value problems, J. Comput. Appl. Math. 214 (2008), 78-89. https://doi.org/10.1016/j.cam.2007.02.020
  17. B.F. Liu, J.H. Zhang, The existence of positive solutions for some nonlinear boundary value problems with linear mixed boundary conditions, J. Math. Anal. Appl. 309 (2005), 505-516. https://doi.org/10.1016/j.jmaa.2004.09.036
  18. H. Luo, Q.Z. Ma, Positive solutions to a generalized second-order three-point boundary value problem on time scales, Eletron. J. Diff. Equ. 17 (2005), 1-14. https://doi.org/10.1007/s10884-005-4558-3
  19. D. Ma, Z. Du, W. Ge, Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator, Comput. Math. Appl. 50 (2005), 729-739. https://doi.org/10.1016/j.camwa.2005.04.016
  20. R.Y. Ma, Existence of solutions of nonlinear m-point boundary value problem, J. Math. Anal. Appl. 256 (2001), 556-567. https://doi.org/10.1006/jmaa.2000.7320
  21. H. Su, B. Wang, Z. Wei, Positive solutions of four-point boundary value problems for four-order p-Laplacian dynamic equations on time scales, Eletron. J. Differen. Equ. 78 (2006), 1-13.
  22. H. Su, Z. Wei, F. Xu, The existence of countably many positive solutions For a system of nonlinear singular boundary value problems with the p-Laplacian operator, J. Math. Anal. Appl. 325 (2007), 319-332. https://doi.org/10.1016/j.jmaa.2006.01.064
  23. H.R. Sun, W.T. Li, Multiple Positive solutions for p-Laplacian m-point boundary value problems on time scales, Appl. Math. Comut. 182 (2006), 478-491. https://doi.org/10.1016/j.amc.2006.04.009
  24. H.R. Sun, W.T. Li, Positive solutions for nonlinear three-point boundary value problems on time scales, J. Math. Anal. Appl. 299 (2004), 508-524. https://doi.org/10.1016/j.jmaa.2004.03.079
  25. H.R. Sun, W.T. Li, Positive solutions for nonlinear m-point boundary value problems on time scales, Acta Mathematica Sinica 49 (2006), 369-380(in Chinese).
  26. Yu Yang, Dongmei Xiao, On existence of multiple positive solutions for $\phi$-Laplacian multipoint boundary value, Nonlinear Analysis 71 (2009), 4158-4166. https://doi.org/10.1016/j.na.2009.02.080
  27. Wei Han, Zhen Jin, Multiplicity of positive solutions for a nonlinear m-point BVP with sign changing nonlinearity on time scales, J Appl Math Comput, Doi: 10.1007/s12190-009-0314-x.