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POSITIVE SOLUTIONS OF NONLINEAR m-POINT BVP FOR

AN INCREASING HOMEOMORPHISM AND POSITIVE

HOMOMORPHISM ON TIME SCALES

WEI HAN∗, ZHEN JIN AND GUANG ZHANG

Abstract. In this paper, by using fixed point theorems in cones, the ex-
istence of positive solutions is considered for nonlinear m-point boundary
value problem for the following second-order dynamic equations on time
scales

(φ(u∆))∇ + a(t)f(t, u(t)) = 0, t ∈ (0, T ),

u(0) =

m−2∑
i=1

aiu(ξi), φ(u∆(T )) =

m−2∑
i=1

biφ(u
∆(ξi)),

where φ : R −→ R is an increasing homeomorphism and positive homo-
morphism and φ(0) = 0. In [27], we obtained the existence results of the
above problem for an increasing homeomorphism and positive homomor-
phism with sign changing nonlinearity. The purpose of this paper is to
supplement with a result in the case when the nonlinear term f is non-
negative, and the most point we must point out for readers is that there
is only the p-Laplacian case for increasing homeomorphism and positive
homomorphism due to the sign restriction. As an application, one example
to demonstrate our results are given.

AMS Mathematics Subject Classification : 39A10, 34B15, 34B18.
Key words and phrases : Time scale, Positive solutions, Boundary value
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1. Introduction

A time scale T is a nonempty closed subset of R. We make the blanket
assumption that 0, T are points in T. By an interval (0, T), we always mean
the intersection of the real interval (0, T) with the given time scale, that is (0,
T)∩T.
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In this paper, we will be concerned with the existence of positive solutions
for the following dynamic equations on time scales:

(φ(u∆))∇ + a(t)f(t, u(t)) = 0, t ∈ (0, T ), (1.1)

u(0) =

m−2∑

i=1

aiu(ξi), φ(u∆(T )) =

m−2∑

i=1

biφ(u
∆(ξi)), (1.2)

where φ : R −→ R is an increasing homeomorphism and positive homomorphism
and φ(0) = 0.

A projection φ : R −→ R is called an increasing homeomorphism and positive
homomorphism, if the following conditions are satisfied:

(i) if x ≤ y, then φ(x) ≤ φ(y), ∀ x, y ∈ R;

(ii) φ is a continuous bijection and its inverse mapping is also continuous;

(iii) φ(xy) = φ(x)φ(y), ∀ x, y ∈ R+ = [0,+∞).

We will assume that the following conditions are satisfied throughout this
paper:

(H1) 0 < ξ1 < · · · < ξm−2 < ρ(T ), ai, bi ∈ [0,+∞) satisfy 0 <
m−2∑
i=1

ai < 1,

and
m−2∑
i=1

bi < 1;

(H2) a(t) ∈ Cld((0, T ), [0,+∞)) and there exists t0 ∈ (ξm−2, T ), such that
a(t0) > 0;

(H3) f ∈ C([0, T ] × [0,+∞), [0,+∞)). (The ∆-derivative and the ∇-
derivative in (1.1), (1.2) and the Cld space in (H2) are defined in Section 2.)

For the existence problems of positive solutions of boundary value problems on
time scales, some authors have obtained many results in the recent years, see [4,
12, 13, 24] and the references therein. Recently, there has been much attention
paid to the existence of positive solutions for second-order nonlinear boundary
value problems on time scales, for examples, see [3, 9, 14, 25] and references
therein. At the same time, multipoint nonlinear boundary value problems with
p-Laplacian operators on time scales have also been studied extensively in the
literature, for details, see [4, 12, 13, 18, 21-23] and references therein. But
to the best of our knowledge, few people considered the second-order dynamic
equations of increasing homeomorphism and positive homomorphism on time
scales.

Feng et. al. [10] discussed the following multipoint boundary-value problem
with one dimensional p-Laplacian:

(φp(u
′))′ + q(t)f(t, u) = 0, t ∈ (0, 1), (1.3)
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u(0) =

m−2∑

i=1

aiu(ξi), u(1) =

m−2∑

i=1

biu(ξi). (1.4)

They obtained sufficient conditions for the existence of multiple positive solutions
for the above boundary value problem by using a fixed point theorem in a cone.

D.Ma, Z.Du and W.Ge [19] have obtained the existence of monotone positive
solutions for the following BVP:

(φ(u′))′ + a(t)f(t, u(t)) = 0, t ∈ (0, 1), (1.5)

u′(0) =
m−2∑

i=1

aiu
′(ξi), u(1) =

m−2∑

i=1

biu(ξi). (1.6)

The main tool is the monotone iterative technique.
The present work is moviated by papers [16, 17, 26]. Very recently, Yang and

Xiao [26] studied the existence of multiple positive solutions for the following
multipoint BVP:

(φ(x′(t)))′ + q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1), (1.7)

x(0) =

n−2∑

i=1

αix(ξi), φ(x′(1)) =
n−2∑

i=1

βiφ(x
′(ξi)), (1.8)

where φ : R −→ R is an odd, increasing homeomorphism from R to R. By using
the fixed point theorems, they obtained new results on the existence of at least
three positive solutions of above boundary value problem.

On the one hand, the purpose of our paper is to supplement with a proof in
the case when the nonlinear term f is nonnegative. The proof is quite similar to
that of our previous paper [27]. On the other hand, the first author would like
to point out that there is only the p-Laplacian case for increasing homeomor-
phism and positive homomorphism due to the sign restriction, this point was
proposed by professor Jeff Webb. This is the main motivation for us to write
down the present paper. We also point out that when T = R, p = 2, (1.1)
and (1.2) becomes a boundary value problem of differential equations and just
is the problem considered in [20]. Our main results extend and include the main
results of [16, 17, 20].

The rest of the paper is arranged as follows. We state some basic time scale
definitions and prove several preliminary results in Section 2, Section 3 is de-
voted to the existence of positive solution of (1.1) and (1.2), the main tool being
the fixed point theorem in cone. At the end of the paper, we will give one simple
example which illustrate that our work is true.

2. Preliminaries and some Lemmas
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For convenience, we list the following definitions which can be found in [1, 5,
7, 8, 27].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R.
For t < supT and r > inf T, define the forward jump operator σ and backward
jump operator ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T.

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r,
r is said to be left scattered; if σ(t) = t, t is said to be right dense, and if
ρ(r) = r, r is said to be left dense. If T has a right scattered minimum m, define
Tk = T − {m}; otherwise set Tk = T. If T has a left scattered maximum M ,
define Tk = T− {M}; otherwise set Tk = T.

Definition 2.2. For f : T → R and t ∈ Tk, the delta derivative of f at the
point t is defined to be the number f∆(t), (provided it exists), with the property
that for each ε > 0, there is a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,
for all s ∈ U .

For f : T → R and t ∈ Tk, the nabla derivative of f at t is the number
f∇(t), (provided it exists), with the property that for each ε > 0, there is a
neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,
for all s ∈ U .

Definition 2.3. A function f is left-dense continuous (i.e. ld-continuous), if f
is continuous at each left-dense point in T and its right-sided limit exists at each
right-dense point in T.

Definition 2.4. If G∆(t) = f(t), then we define the delta integral by
∫ b

a

f(t)∆t = G(b)−G(a).

If F∇(t) = f(t), then we define the nabla integral by
∫ b

a

f(t)∇t = F (b)− F (a).

To prove the main results in this paper, we will employ several lemmas. These
lemmas are based on the linear BVP

(φ(u∆))∇ + h(t) = 0, t ∈ (0, T ), (2.1)
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u(0) =

m−2∑

i=1

aiu(ξi), φ(u∆(T )) =

m−2∑

i=1

biφ(u
∆(ξi)). (2.2)

Lemma 2.1(see [27]). If
m−2∑
i=1

ai 6= 1 and
m−2∑
i=1

bi 6= 1, then for h ∈ Cld[0, T ] the

BVP (2.1) and (2.2) has the unique solution

u(t) =

∫ t

0

φ−1

(∫ T

s

h(τ)∇τ −A

)
∆s+B, (2.3)

where

A = −

m−2∑
i=1

bi

∫ T

ξi

h(τ)∇τ

1−
m−2∑
i=1

bi

, B =

m−2∑
i=1

ai

∫ ξi

0

φ−1

(∫ T

s

h(τ)∇τ −A

)
∆s

1−
m−2∑
i=1

ai

.

Lemma 2.2(see [27]). Assume (H1) holds, For h ∈ Cld[0, T ] and h ≥ 0, then
the unique solution u of (2.1) and (2.2) satisfies

u(t) ≥ 0, for t ∈ [0, T ].

Lemma 2.3(see [27]). Assume (H1) holds, if h ∈ Cld[0, T ] and h ≥ 0, then the
unique solution u of (2.1) and (2.2) satisfies

inf
t∈[0,T ]

u(t) ≥ γ ‖ u ‖,

where

γ =

m−2∑
i=1

aiξi
(
1−

m−2∑
i=1

ai

)
T +

m−2∑
i=1

aiξi

, ‖u‖ = max
t∈[0,T ]

|u(t)|.

Let the norm on Cld[0, T ] be the maximum norm. Then the Cld[0, T ] is a
Banach space. It is easy to see that the BVP (1.1) and (1.2) has a solution
u = u(t) if and only if u is a fixed point of the operator equation

(Au)(t) =

∫ t

0

φ−1

(∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

)
∆s+ B̃,

where

Ã = −

m−2∑
i=1

bi

∫ T

ξi

a(τ)f(τ, u(τ))∇τ

1−
m−2∑
i=1

bi

,
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B̃ =

m−2∑
i=1

ai

∫ ξi

0

φ−1

(∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

)
∆s

1−
m−2∑
i=1

ai

.

Denote

K = {u|u ∈ Cld[0, T ], u(t) ≥ 0, inf
t∈[0,T ]

u(t) ≥ γ ‖ u ‖},

where γ is the same as in Lemma 2.3. It is obvious that K is a cone in Cld[0, T ].
By Lemma 2.3, A(K) ⊂ K. So by applying Arzela-Ascoli theorem on time
scales [2], we can obtain that A(K) is relatively compact. In view of Lebesgue’s
dominated convergence theorem on time scales [6], it is easy to prove that A is
continuous. Hence, A : K → K is completely continuous.

Lemma 2.4.(see [11]) Let K be a cone in a Banach space X. Let D be an open
bounded subset of X with DK = D ∩ K 6= φ and DK 6= K. Assume that
A : DK −→ K is a completely continuous map such that x 6= Ax for x ∈ ∂DK .
Then the following results hold:
(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂DK , then i(A,DK ,K) = 1;
(2) If there exists x0 ∈ K\{θ} such that x 6= Ax+ λx0, for all x ∈ ∂DK and all
λ > 0, then i(A,DK ,K) = 0;
(3) Let UK be open in X such that UK ⊂ DK . If i(A,DK ,K) = 1 and
i(A,UK ,K) = 0, then A has a fixed point in DK\UK .

The same results holds, if i(A,DK ,K) = 0 and i(A,UK ,K) = 1, we define

Kρ = {u(t) ∈ K : ‖u‖ < ρ}, Ωρ = {u(t) ∈ K : min
0≤t≤T

u(t) < γρ}.

Lemma 2.5.(see [15]) Ωρ defined above has the following properties:
(a) Kγρ ⊂ Ωρ ⊂ Kρ;
(b) Ωρ is open relative to K;
(c) x ∈ ∂Ωρ if and only if min

0≤t≤T
x(t) = γρ

(d) If x ∈ ∂Ωρ, then γρ ≤ x(t) ≤ ρ for t ∈ [0, T ].
Now, for the convenience, we introduce the following notations. Let

ϕ(s) = φ−1

(∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

)
,

fρ
γρ = min

{
min

0≤t≤T

f(t, u)

φ(ρ)
: u ∈ [γρ, ρ]

}
, fρ

0 = max

{
max
0≤t≤T

f(t, u)

φ(ρ)
: u ∈ [0, ρ]

}
,

fα = lim
u→α

sup max
0≤t≤T

f(t, u)

φ(u)
, fα = lim

u→α
inf min

0≤t≤T

f(t, u)

φ(u)
, (α := ∞ or 0+),
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m =





∫ T

0

φ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


∆s

+

m−2∑
i=1

ai

1−
m−2∑
i=1

ai

∫ ξi

0

φ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


∆s





−1

,

(2.4)

M =





m−2∑
i=1

ai

1−
m−2∑
i=1

ai

∫ ξi

0

φ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


∆s





−1

. (2.5)

Lemma 2.6. If f satisfies the following conditions

fρ
0 ≤ φ(m) and u 6= Au, for u ∈ ∂ Kρ, (2.6)

then i(A,Kρ,K) = 1.

Proof. By (2.4) and (2.6), we have for ∀u ∈ ∂ Kρ,
∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

=

∫ T

s

a(τ)f(τ, u(τ))∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)f(τ, u(τ))∇τ

1−
m−2∑
i=1

bi

≤ φ(ρ)φ(m)



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


 ,

so that

ϕ(s) = φ−1

(∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

)

≤ ρmφ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


 .
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Therefore, by (2.4), we have

‖ Au ‖ ≤
∫ T

0

ϕ(s)∆s+ B̃

=

∫ T

0

ϕ(s)∆s+

m−2∑
i=1

ai

∫ ξi

0

ϕ(s)∆s

1−
m−2∑
i=1

ai

≤ ρm





∫ T

0

φ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


∆s

+

m−2∑
i=1

ai

1−
m−2∑
i=1

ai

∫ ξi

0

φ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


∆s





= ρ = ‖u‖.

This implies that ‖Au‖ ≤ ‖u‖ for u ∈ ∂ Kρ. By Lemma 2.4(1), we have

i(A,Kρ,K) = 1.

Lemma 2.7. If f satisfies the following conditions

fρ
γρ ≥ φ(Mγ) and u 6= Au for u ∈ ∂Ωρ, (2.7)

then i(A,Ωρ,K) = 0.

Proof. Let e(t) ≡ 1, for t ∈ [0, T ]; then e ∈ ∂ K1. We claim that u 6= Au + λe
for u ∈ ∂ Ωρ, and λ > 0. In fact, if not, there exist u0 ∈ ∂Ω, and λ0 > 0 such
that u0 = Au0 + λ0e.
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By (2.5) and (2.7), we have for t ∈ [0, T ],
∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

=

∫ T

s

a(τ)f(τ, u(τ))∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)f(τ, u(τ))∇τ

1−
m−2∑
i=1

bi

≥ φ(ρ)φ(Mγ)



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


 ,

so that

ϕ(s) = φ−1

(∫ T

s

a(τ)f(τ, u(τ))∇τ − Ã

)

≥ ρMγφ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


 .

Applying (2.5), it follows that

u0(t) = Au0(t) + λ0e(t)

≥ B̃ + λ0 =

m−2∑
i=1

ai

∫ ξi

0

ϕ(s)∆s

1−
m−2∑
i=1

ai

+ λ0

≥ γρM

m−2∑
i=1

ai

1−
m−2∑
i=1

ai

∫ ξi

0

φ−1



∫ T

s

a(τ)∇τ +

m−2∑
i=1

bi

∫ T

ξi

a(τ)∇τ

1−
m−2∑
i=1

bi


∆s+ λ0

= γρ+ λ0.

This implies that γρ ≥ γρ + λ0, a contradiction. Hence, by Lemma 2.4 (2), it
follows that

i(A,Ωρ,K) = 0.

3. Existence theorems of positive solutions
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Theorem 3.1. Assume (H1), (H2) and (H3) hold, and assume that one of the
following conditions hold:
(H4) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < γρ2 such that

fρ1

0 ≤ φ(m), fρ2
γρ2

≥ φ(Mγ);

(H5) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

fρ2

0 ≤ φ(m), fρ1
γρ1

≥ φ(Mγ).

Then (1.1), (1.2) has a positive solution.

Proof. Assume that (H4) holds. We show that A has a fixed point u1 in
Ωρ2

\Kρ1
. By Lemma 2.6, we have that

i(A,Kρ1 ,K) = 1.

By Lemma 2.7, we have that

i(A,Ωρ2 ,K) = 0.

By Lemma 2.5 (a) and ρ1 < γρ2, we have Kρ1 ⊂ Kγρ2 ⊂ Ωρ2 . It follows from

Lemma 2.4(3) that A has a fixed point u1 in Ωρ2\Kρ1 , The proof is similar when
H5 holds, and we omit it here. The proof is complete.

As a special case of Theorem 3.1, we obtain the following result:

Corollary 3.1. Assume (H1), (H2) and (H3) holds, and suppose that one of the
following conditions holds:
(H6) 0 ≤ f0 < φ(m) and φ(M) < f∞ ≤ ∞.
(H7) 0 ≤ f∞ < φ(m) and φ(M) < f0 ≤ ∞.
Then (1.1), (1.2) has a positive solution.

Theorem 3.2. Assume (H1), (H2) and (H3) hold, and suppose that one of the
following conditions holds:
(H8) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < γρ2 and ρ2 < ρ3 such that

fρ1

0 ≤ φ(m), fρ2
γρ2

≥ φ(Mγ), u 6= Au, ∀ u ∈ ∂Ωρ2 , and fρ3

0 ≤ φ(m);

(H9) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < ρ2 < γρ3 such that

fρ2

0 ≤ φ(m), fρ1
γρ1

≥ φ(Mγ), u 6= Au, ∀ u ∈ ∂Kρ2 , and fρ3
γρ3

≥ φ(Mγ).

Then (1.1), (1.2) has two positive solutions. Moreover, if (H8)f
ρ1

0 ≤ φ(m) is
replaced by fρ1

0 < φ(m), then (1.1), (1.2) has a third positive solution u3 ∈ Kρ1 .



Nonlinear m-point BVP for an increasing homeomorphism and positive homomorphism 1181

Proof. Assume that (H8) holds. We show that either A has a fixed point u1 in
∂ Kρ1

or Ωρ2
\Kρ1

. If u 6= Au for u ∈ ∂Kρ1
∪ ∂Kρ3

. by Lemma 2.6 and 2.7, we
have that

i(A,Kρ1
,K) = 1, i(A,Kρ3

,K) = 1, i(A,Ωρ2
,K) = 0.

By Lemma 2.5 (a) and ρ1 < γρ2, we have Kρ1 ⊂ Kγρ2 ⊂ Ωρ2 . It follows from

Lemma 2.4 (3) that A has a fixed point u1 in Ωρ2
\Kρ1

. Similarly, A has a fixed

point in Kρ3
\Ωρ2

. The proof is similar when (H9) holds and we omit it here.
The proof is complete.

As a special case of Theorem 3.2, we obtain the following result:

Corollary 3.2. Assume (H1), (H2) and (H3) holds, if there exist ρ > 0 such
that one of the following conditions holds:
(H10) 0 ≤ f0 < φ(m), fρ

γρ ≥ φ(Mγ), u 6= Au, ∀u ∈ ∂Ωρ and 0 ≤ f∞ < φ(m);

(H11) φ(m) < f0 ≤ ∞, fρ
0 ≤ φ(m), u 6= Au, ∀ u ∈ ∂ Kρ and φ(M) < f∞ ≤ ∞.

Then (1.1), (1.2) has two positive solutions.

Remark 3.1. If T = R, (0, T ) = (0, 1), p = 2. Theorem 3.1 and 3.2 improve
Theorem 3.1 in [20].

4. Applications

In this section, we present one simple examples to explain our results.

Example 4.1. Let T = {( 12 )n : n ∈ N}⋃{1}, T = 1. Consider the following
BVP on time scales

(φ(u∆))∇ + f(t, u(t)) = 0, t ∈ (0, T ), (4.1)

u(0) =
1

4
u(

1

3
), φ(u∆(T )) =

1

2
φ(u∆(

1

3
)), (4.2)

where

φ(u) =

{
u3, u ≤ 0,

u2, u > 0,
f(t, u) =

1

81
(1+ t) (u(t))

20
, (t, u) ∈ [0, 1]× [0,+∞).

It is easy to check that f : [0, 1] × [0,+∞) −→ [0,+∞) is continuous. In this
case, a(t) ≡ 1, a1 = 1

4 , b1 = 1
2 , ξ1 = 1

3 , it follows from a direct calculation
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that

m =

{∫ T

0

φ−1

[
(T − s) +

b1(T − ξ1)

1− b1

]
∆s

+
a1

1− a1

∫ ξ1

0

φ−1

[
(T − s) +

b1(T − ξ1)

1− b1

]
∆s

}−1

=



∫ 1

0

(
1− s+

1
2 (1− 1

3 )

1− 1
2

) 1
2

ds+
1
4

1− 1
4

∫ 1
3

0

(
1− s+

1
2 (1− 1

3 )

1− 1
2

) 1
2

ds



−1

=

[∫ 1

0

(
5

3
− s

) 1
2

ds+
1

3

∫ 1
3

0

(
5

3
− s

) 1
2

ds

]−1

≈ 0.8281,

M =

{
a1

1− a1

∫ ξ1

0

φ−1

[
(T − s) +

b1(T − ξ1)

1− b1

]
∆s

}−1

=

[
1
4

1− 1
4

∫ 1
3

0

(
5

3
− s

) 1
2

ds

]−1

≈ 7.3523,

γ =
a1ξ1

(1− a1)T + a1ξ1
=

1
4 · 1

3

(1− 1
4 ) · 1 + 1

4 · 1
3

=
1

10
.

Choose ρ1 = 1, ρ2 = 20, it is easy to check that 1 = ρ1 < γρ2 = 1
10 × 20 = 2,

fρ1

0 = max

{
max
0≤t≤1

1
81 · (1 + t) · u20

12
: u ∈ [0, 1]

}

=
1
81 · (1 + 1) · 120

12
=

2

81

≤ φ(m) = m2 = (0.8281)2,

fρ2
γρ2

= min

{
min
0≤t≤1

1
81 · (1 + t) · u20

202
: u ∈ [2, 20]

}

=
1
81 · 1 · 220

202
=

220

81 · 202 ≈ 32.3635

≥ φ(Mγ) = (Mγ)2 =
(
7.3523 · 1

10

)2 ≈ 0.5405.

It follows that f satisfies the conditions (H4) of Theorem 3.1, then problem (4.1)
and (4.2) has at least a positive solution.
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