References
- H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 (1983) 486-490.
- H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Commun. Pure Appl. Math. 34 (1983) 437-477.
- L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequality with weights, Compos. Math. 53 (1984) 259-275.
- J. Chen, S. Li, On multiple solutions of a singular quasi-linear equation on unbounded domain, J. Math. Analysis Applic. 275 (2002) 733-746. https://doi.org/10.1016/S0022-247X(02)00398-0
- J. Chabrowski, On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent, Diff. Integ. Eqns 8 (1995) 705-716.
- A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Diff. Eqns 177 (2001) 494-522. https://doi.org/10.1006/jdeq.2000.3999
- J. Garcia Azorero, I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998) 441-476. https://doi.org/10.1006/jdeq.1997.3375
- N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc. 352 (2000) 5703-5743. https://doi.org/10.1090/S0002-9947-00-02560-5
- X. M. He, W. M. Zou, Infinitely many arbitrarily small solutions for sigular elliptic problems with critical Sobolev-Hardy exponents, Proc. Edinburgh Math. Society (2009) 52, 97-108.
- R. Kajikiya, A critical-point theorem related to the symmetric mountain-pass lemma and its applications to elliptic equations, J. Funct. Analysis 225 (2005) 352-370. https://doi.org/10.1016/j.jfa.2005.04.005
- D. S. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms, Nonlin. Analysis 68 (2008) 1973-1985. https://doi.org/10.1016/j.na.2007.01.024
- S. Li, W. Zou, Remarks on a class of elliptic problems with critical exponents, Nonlin. Analysis 32 (1998) 769-774. https://doi.org/10.1016/S0362-546X(97)00514-2
- P. L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, I, Rev. Mat. Ibero. 1 (1985) 45-120.
- P. L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, II, Rev. Mat. Ibero. 1 (1985) 145-201.
-
C.J. He, G.B. Li,. The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to
$u^{p-1}$ at infinity in$R^N$ , Nonlinear Anal., 68 (2008) 1100-1119. https://doi.org/10.1016/j.na.2006.12.008 - G.B. Li, G. Zhang, Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Math. Scientia, 29B (2009) 903-918.
- P. H. Rabinowitz, Minimax methods in critical-point theory with applications to differential equations, CBME Regional Conference Series in Mathematics, Volume 65 (American Mathematical Society, Providence, RI, 1986).
- D. Smets, A concentration-compactness principle lemma with applications to singular eigenvalue problems, J. Funct. Analysis 167 (1999) 463-480. https://doi.org/10.1006/jfan.1999.3461
- E. A. Silva, M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Annales Inst. H. Poincare Analyse Non Lineaire 20 (2003) 341-358. https://doi.org/10.1016/S0294-1449(02)00013-6