INFINITELY MANY SMALL SOLUTIONS FOR THE p&q-LAPLACIAN PROBLEM WITH CRITICAL SOBOLEV AND HARDY EXPONENTS

  • Liang, Sihua (Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, College of Mathematics, Changchun Normal University) ;
  • Zhang, Jihui (Institute of Mathematics, School of Mathematical Science, Nanjing Normal University) ;
  • Fan, Fan (Institute of Mathematics, School of Mathematical Science, Nanjing Normal University)
  • Received : 2009.10.27
  • Accepted : 2009.11.23
  • Published : 2010.09.30

Abstract

In this paper, we study the following p&q-Laplacian problem with critical Sobolev and Hardy exponents {$-{\Delta}_pu-{\Delta}_qu={\mu}\frac{{\mid}u{\mid}^{p^*(s)-2}u}{{\mid}x{\mid}^s}+{\lambda}f(x,\;u)$, in $\Omega$, u=0, on $\Omega$, where ${\Omega}\;{\subset}\;\mathbb{R}^{\mathbb{N}}$ is a bounded domain and ${\Delta}_ru=div({\mid}{\nabla}u{\mid}^{r-2}{\nabla}u)$ is the r-Laplacian of u. By using the variational method and concentration-compactness principle, we obtain the existence of infinitely many small solutions for above problem which are the complement of previously known results.

Keywords

References

  1. H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 (1983) 486-490.
  2. H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Commun. Pure Appl. Math. 34 (1983) 437-477.
  3. L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequality with weights, Compos. Math. 53 (1984) 259-275.
  4. J. Chen, S. Li, On multiple solutions of a singular quasi-linear equation on unbounded domain, J. Math. Analysis Applic. 275 (2002) 733-746. https://doi.org/10.1016/S0022-247X(02)00398-0
  5. J. Chabrowski, On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent, Diff. Integ. Eqns 8 (1995) 705-716.
  6. A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Diff. Eqns 177 (2001) 494-522. https://doi.org/10.1006/jdeq.2000.3999
  7. J. Garcia Azorero, I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998) 441-476. https://doi.org/10.1006/jdeq.1997.3375
  8. N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc. 352 (2000) 5703-5743. https://doi.org/10.1090/S0002-9947-00-02560-5
  9. X. M. He, W. M. Zou, Infinitely many arbitrarily small solutions for sigular elliptic problems with critical Sobolev-Hardy exponents, Proc. Edinburgh Math. Society (2009) 52, 97-108.
  10. R. Kajikiya, A critical-point theorem related to the symmetric mountain-pass lemma and its applications to elliptic equations, J. Funct. Analysis 225 (2005) 352-370. https://doi.org/10.1016/j.jfa.2005.04.005
  11. D. S. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms, Nonlin. Analysis 68 (2008) 1973-1985. https://doi.org/10.1016/j.na.2007.01.024
  12. S. Li, W. Zou, Remarks on a class of elliptic problems with critical exponents, Nonlin. Analysis 32 (1998) 769-774. https://doi.org/10.1016/S0362-546X(97)00514-2
  13. P. L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, I, Rev. Mat. Ibero. 1 (1985) 45-120.
  14. P. L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, II, Rev. Mat. Ibero. 1 (1985) 145-201.
  15. C.J. He, G.B. Li,. The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to $u^{p-1}$ at infinity in $R^N$, Nonlinear Anal., 68 (2008) 1100-1119. https://doi.org/10.1016/j.na.2006.12.008
  16. G.B. Li, G. Zhang, Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Math. Scientia, 29B (2009) 903-918.
  17. P. H. Rabinowitz, Minimax methods in critical-point theory with applications to differential equations, CBME Regional Conference Series in Mathematics, Volume 65 (American Mathematical Society, Providence, RI, 1986).
  18. D. Smets, A concentration-compactness principle lemma with applications to singular eigenvalue problems, J. Funct. Analysis 167 (1999) 463-480. https://doi.org/10.1006/jfan.1999.3461
  19. E. A. Silva, M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Annales Inst. H. Poincare Analyse Non Lineaire 20 (2003) 341-358. https://doi.org/10.1016/S0294-1449(02)00013-6