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INFINITELY MANY SMALL SOLUTIONS FOR THE

p&q-LAPLACIAN PROBLEM WITH CRITICAL SOBOLEV AND

HARDY EXPONENTS
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Abstract. In this paper, we study the following p&q-Laplacian problem
with critical Sobolev and Hardy exponents{

−∆pu−∆qu = µ
|u|p∗(s)−2u

|x|s + λf(x, u), in Ω,

u = 0, on Ω,

where Ω ⊂ RN is a bounded domain and ∆ru = div(|∇u|r−2∇u) is the
r-Laplacian of u. By using the variational method and concentration-
compactness principle, we obtain the existence of infinitely many small
solutions for above problem which are the complement of previously known
results.
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1. Introduction
In this paper, we study the following p&q-Laplacian problem with critical

Sobolev and Hardy exponents




−∆pu−∆qu = µ
|u|p∗(s)−2u

|x|s + λf(x, u), in Ω,

u = 0, on Ω,
(1)

where 1 ≤ q < p < N , −∆pu := −div(|∇u|p−2∇u) is the p-Lapace. µ and λ
are two positive parameters, and Ω ⊂ RN (N ≥ 3) is an open bounded domain.

0 ≤ s ≤ p < N , p∗(s) = (N−s)p
N−p is the so called Hardy-Sobolev critical exponent.

When s = 0, p∗(0) = p∗ = Np
N−p is the Sobolev critical exponent and if s = p,
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p∗(p) = p is the Hardy critical exponent.
Problem (1) come from a general reaction-diffusion system

ut = div[D(u)∇u] + f(x, u), (2)

where D(u) = (|∇u|p−2+|∇u|q−2). This system has a wide range of applications
in physics and related sciences such as biophysics, plasma physics, and chemical
reaction design. In such applications, the function u describes a concentration;
the first term on the right hand side of (2) corresponds to diffusion with a dif-
fusion coefficient D(u), whereas the second one is the reaction and relates to
source and loss processes. Typically, in chemical and biological applications, the
reaction term f(x, u) has a polynomial form with respect to the concentration
u.

If q = p = 2. Elliptic equations with critical exponent have been considered
by many authors since the pioneer work by Brezis and Nirenberg [2] in case
s = 0 and f(x, u) = u. The authors showed that for N > 4 and λ ∈ (0, λ1),
problem (1) has at least one positive solution. In the sequel, λ1 denotes the
principal eigenvalue of −∆ on Ω. The same conclusion was proved by Brezis
and Nirenberg for N = 3 when Ω is a ball and λ ∈ (λ1/4, λ1). In this case,
equation (1) has no radial solution when λ ∈ (0, λ1/4). Li and Zou [12] studied
problem (1) in case s = 0, they obtained the existence theorem of infinitely
many solutions of problem (1.1) under suitable hypotheses. It should be noted
that the nonlinearity f(x, u) in this paper satisfying fewer conditions than [12].
When a singular potential is concerned, He and Zou [9] proved that the existence
infinitely many small solutions under case µ ≡ 1.

If q = p 6= 2. Ghoussoub and Yuan [8] obtained the existence of infin-
itely many nontrivial solutions for Hardy-Sobolev subcritical case and Hardy
critical case by establishing Palais-Smale type conditions around appropriate
chosen dual sets in bounded domain. Besides, although there are a lot of pa-
pers about the singular problems with Hardy-Sobolev critical exponents (see
[5, 19]). But there are few results dealing with the case the general form f(x, t).

When f(x, u) = |u|q−2

|x|s u, the existence of positive solutions for the equation (1)

are obtained in [11]. Chen and Li [4] obtained that the existence of infinitely
many solutions by using minimax procedure in the case f(x, u) = k(x)|u|r−2u

(1 < r < Np
N−p ). But they did not give any further information on the sequence

of solutions.
If q 6= p 6= 2. This case is very interesting and importantal. Li and Zhang [16]

studied the existence of multiple solutions for the nonlinear elliptic problems
of p&q-Laplacian type involving the critical Sobolev exponent in case s = 0,
µ ≡ 1 and f(x, u) = |u|r−2u, they obtained infinitely many weak solutions by
using Lusternik-Schnirelman’s theory for Z2-invariant functional. He and Li [15]
studied the following p&q-Laplacian type problem

{ −∆pu−∆qu+m|u|p−2u+ n|u|q−2u = f(x, u), in RN ,
u ∈ W 1,p(RN ) ∩W 1,q(RN ),
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where m,n > 0 and 1 < q < p < N , they obtained the existence of a nontrivial
solution.

Recently, Kajikiya [10] established a critical point theorem related to the sym-
metric mountain pass lemma and applied to a sublinear elliptic equation. But
there are no such results on p&q-Laplacian problem with critical Sobolev and
Hardy exponents (1).

Motivated by reasons above, the aim of this paper is to show that the exis-
tence of infinitely many solutions of problem (1), and there exists a sequence
of infinitely many arbitrarily small solutions converging to zero by using a new
version of the symmetric mountain-pass lemma due to Kajikiya [10]. In order to
use the symmetric mountain-pass lemma, there are many difficulties. The main
one in solving the problem is a lack of compactness which can be illustrated by
the fact that the embedding of H1,p

0 (Ω) into Lp∗
(Ω) is no longer compact. Hence

the concentration-compactness principle is used here to overcome the difficulty.
u ∈ H1,p

0 (Ω) is said to be a solutions of problem (1.1) if u satisfies

∫

Ω

(
|∇u|p−2∇u · ∇v + |∇u|q−2∇u · ∇v − µ

|u|p∗(s)−2uv

|x|s − λf(x, u)v

)
dx = 0

for all v ∈ H1,p
0 (Ω).

Problem (1.1) is related to the well known Sobolev-Hardy inequalities, which
is essentially due to Caffarelli, Kohn and Nirenberg (see [3]),

(∫

RN

|u|q
|x|s dx

) p
q

≤ Cq,s,p

∫

RN

|∇u|pdx, ∀ u ∈ H1,p
0 (Ω),

where p ≤ q ≤ p∗. For sharp constants and extremal functions, see [8]. As q =
s = p, the above Sobolev inequality becomes the well known Hardy inequality
(see[3, 7, 8]),

∫

Ω

|u|p
|x|p dx ≤ 1

µ

∫

Ω

|∇u|pdx, ∀ u ∈ H1,p
0 (Ω). (3)

In this paper, we use the norm

‖u‖ = ‖u‖H1,p
0 (Ω) :=

(∫

Ω

|∇u|pdx
) 1

p

.

We denote As the best constant of the Hardy-Sobolev inequality, i.e.,

As(Ω) := inf
u∈H1,p

0 (Ω)\{0}

∫

Ω

|∇u|pdx
(∫

Ω

|u|p∗(s)

|x|s dx

) p
p∗(s)

, (4)

which is independent of Ω and can be achieved when 0 ≤ s ≤ p < N . A0 is
nothing but the best constant in the Sobolev inequality, Ap is the best constant
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in Hardy inequality. In this paper, we will use λ1, where λ1 is the first eigenvalue
of −∆p according to Dirichlet boundary condition defined as

λ1 := inf
u∈H1,p

0 (Ω)\{0}

∫

Ω

|∇u|pdx
(∫

Ω

|u|pdx
) .

The energy functional corresponding to problem (1) is defined as follows,

I(u) =
1

p

∫

Ω

|∇u|pdx+
1

q

∫

Ω

|∇u|qdx− µ

p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx− λ

∫

Ω

F (x, u)dx,

then I(u) is well defined on H1,p
0 (Ω). Standard arguments [17] show that I(u)

belongs to C1(H1,p
0 (Ω), R). The solutions of problem (1) are then the critical

points of the functional I.

The main result of this paper is as follows.

Theorem 1. Suppose that f(x, u) satisfies the following conditions:

(H1) f(x, u) ∈ C(Ω×R,R), f(x,−u) = −f(x, u) for all u ∈ R;

(H2) lim|u|→∞
f(x,u)

|u|p∗(s)−1 = 0 uniformly for x ∈ Ω;

(H3) lim|u|→0+
f(x,u)
uq−1 = ∞ uniformly for x ∈ Ω.

There for any µ > 0, then exists λ∗ > 0 such that for any λ ∈ (0, λ∗), problem
(1) has a sequence of non-trivial solutions {un} and un → 0 as n → ∞.

Remark 0.1. When p = q = 2, µ ≡ 1 and s = 0, the authors in [12] proved the
existence of infinitely many solutions for (1) under conditions (H1)− (H3) and

(H4)
1
2f(x, u)u−F (x, u) ≥ a−b|u|2∗ for almost every x ∈ Ω and u ∈ R where

F (x, u) =

∫ u

0

f(x, t)dt, b ≥ 0, a ≤ 0.

But they did not give any further information on the sequence of solutions. In
this paper we shall prove that this sequence of solutions may converge to zero.

Remark 0.2. In this paper, the nonlinearity f(x, u) need not satisfy condition
(H4) as in [12]. Furthermore, we consider more general nonlinearity than is
considered in [4, 11, 16]. Hence, we make an improvement of the main results
of [4, 9, 11, 12, 16].

Remark 0.3. If without the symmetry condition (i.e., f(x,−u) = −f(x, u)),
we get an existence theorem of at least one nontrivial solution to problem (1) by
the same method in this paper.

Remark 0.4. There exist many functions f(x, t) satisfying condition (H1)-(H3),
for example, f(x, u) = u(q−1)/3, where p > q > 1 and q is even.
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Definition 0.1. A C1 functional I on Banach space X satisfies the Palais-
Smale condition at level c ((PS)c, for short) if every sequence {un} satisfying

I(un) → c and I ′(un) → 0,

contains a convergent subsequence.

2. Preliminaries and lemmas

Denote M+ as a cone of positive finite Radon measure. Since the proof of
the following result is similar to Lions [13, 14] and is an adaptation of lemma by
D. Smets [18], we just sketch the proof here.

Lemma 1. Let 0 ≤ s ≤ p < N and {un} ⊂ H1,p
0 (Ω) (here Ω is possibly

unbounded) be a bounded sequence, going if necessary to subsequence, we may

assume that un ⇀ u in H1,p
0 (Ω), |∇un|p ⇀ ζ in M+, |un|p

∗(s)

|x|s ⇀ ν in M+.

Define

ζ∞ := lim
R→∞

lim
n→∞

∫

Ω∩|x|>R

|∇un|pdx,

ν∞ := lim
R→∞

lim
n→∞

∫

Ω∩|x|>R

|un|p∗(s)

|x|s dx.

Then there exist a, at most, countable index set J and a collection of points
{xj}, j ∈ J , in Ω such that

(i) ζ∞ ≥ Asν
p/p∗(s)
∞ ;

(ii) ν = |u|p∗(s)

|x|s +
∑

δxjνj, νj > 0, ζ = |∇u|p +∑
δxjAsν

p/p∗(s)
j ;

(iii) ζj ≥ Asν
p/p∗(s)
j ;

(iv) limn→∞

∫

Ω∩|x|>R

|un|p∗(s)

|x|s dx =

∫

Ω∩|x|>R

|u|p∗(s)

|x|s dx+ ‖ν‖+ ν∞.

Under assumption (H2), we have

f(x, u)u = o

( |u|p∗(s)

|x|s
)
, F (x, u) = o

( |u|p∗(s)

|x|s
)
,

which means that, for all ε > 0, there exist a(ε), b(ε) > 0 such that

|f(x, u)u| ≤ a(ε) + ε
|u|p∗(s)

|x|s , (5)

|F (x, u)| ≤ b(ε) + ε
|u|p∗(s)

|x|s . (6)

Hence,

F (x, u)− 1

p
f(x, u)u ≤ c(ε) + ε

|u|p∗(s)

|x|s , (7)

for some c(ε) > 0.
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Lemma 2. Assume condition (H2) holds. Then for any λ > 0, the functional
I satisfies the local (PS)c condition in

c ∈
(
−∞,

(p− s)µ

p(N − s)

[
µ−1As

]N−s
p−s − λc

(
(p− s)µ

2pλ(N − s)

)
|Ω|

)

in the following sense: if

I(un) → c <
(p− s)µ

p(N − s)

[
µ−1As

]N−s
p−s − λc

(
(p− s)µ

2pλ(N − s)

)
|Ω|

and I ′(un) → 0 for some sequence in H1,p
0 (Ω), then {un} contains a subsequence

converging strongly in H1,p
0 (Ω).

Proof. Let {un} be a sequence in H1,p
0 (Ω) such that

I(un) =
1

p

∫

Ω

|∇un|pdx+
1

q

∫

Ω

|∇un|qdx

− µ

p∗(s)

∫

Ω

|un|p∗(s)

|x|s dx− λ

∫

Ω

F (x, un)dx

= c+ o(1), (8)

〈I ′(un), un〉 =

∫

Ω

|∇un|pdx+

∫

Ω

|∇un|qdx

−µ

∫

Ω

|un|p∗(s)

|x|s dx− λ

∫

Ω

f(x, un)undx

= o(1)‖un‖. (9)

By (8) and (9), we have

I(un)− 1

p
〈I ′(un), un〉

=

(
1

q
− 1

p

)∫

Ω

|∇un|qdx+

(
1

p
− 1

p∗(s)

)
µ

∫

Ω

|un|p∗(s)

|x|s dx

−λ

∫

Ω

[
F (x, un)− 1

p
f(x, un)un

]
dx

= c+ o(1)‖un‖,
i.e.,

(p− s)µ

p(N − s)

∫

Ω

|un|p∗(s)

|x|s dx ≤ λ

∫

Ω

[
F (x, un)− 1

p
f(x, un)un

]
dx+ c+ o(1)‖un‖,

since p > q. Then by (7), we have
(

(p− s)µ

p(N − s)
− λε

)∫

Ω

|un|p∗(s)

|x|s dx ≤ λc(ε)|Ω|+ c+ o(1)‖un‖.
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Letting ε = (p− s)µ/2p(N − s)λ, we get

∫

Ω

|un|p∗(s)

|x|s dx ≤ M + o(1)‖un‖, (10)

where o(1) → 0 and M is a some positive number. On the other hand, by (6)
and (10), we have

c+ o(1)‖un‖ = I(un)

=
1

p

∫

Ω

|∇un|pdx+
1

q

∫

Ω

|∇un|qdx

− µ

p∗(s)

∫

Ω

|un|p∗(s)

|x|s dx− λ

∫

Ω

F (x, un)dx

≥ 1

p
‖un‖p − λb(ε)|Ω| −

[
µ

p∗(s)
+ λε

] ∫

Ω

|un|p∗(s)

|x|s dx.. (11)

Thus (10) and (11) imply that {un} is bounded in H1,p
0 (Ω). Therefore we can

assume that un ⇀ u in H1,p
0 (Ω), |∇un|p ⇀ ζ in M+, |un|p

∗(s)

|x|s ⇀ ν in M+. Let

xj be a singular point of the measures ζ and ν, define a function φ(x) ∈ C∞
0 (Ω)

such that φ(x) = 1 in B(xj , ε), φ(x) = 0 in Ω \ B(xj , 2ε) and |∇φ| ≤ 2/ε in Ω.

Then {φun} is bounded in H1,p
0 (Ω), Obviously, 〈I ′(un), unφ〉 → 0, i.e.,

lim
n→∞

[∫

Ω

|∇un|pφdx+

∫

Ω

|∇un|qφdx

−µ

∫

Ω

|un|p∗(s)

|x|s φdx− λ

∫

Ω

f(x, un)unφdx

]

= − lim
n→∞

∫

Ω

(
un|∇un|p−2∇un∇φ+ un|∇un|q−2∇un∇φ

)
dx. (12)

On the other hand, by Hölder inequality and boundedness of {un}, we have that

0 ≤ lim
ε→0

lim
n→∞

∣∣∣∣
∫

Ω

un|∇un|p−2∇un∇φdx

∣∣∣∣

≤ lim
ε→0

lim
n→∞

(∫

Ω

|un|p|∇φ|pdx
) 1

p
(∫

Ω

|∇un|pdx
) p−1

p

≤ C lim
ε→0

(∫

Ω

|u|p|∇φ|pdx
) 1

p

≤ C lim
ε→0

(∫

B(xj ,ε)

|∇φ|Ndx

) 1
N
(∫

B(xj ,ε)

|u|p∗
dx

) 1
p∗

≤ C lim
ε→0

(∫

B(xj ,ε)

|u|p∗
dx

) 1
p∗

= 0. (13)
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Using the same method, we have that

lim
ε→0

lim
n→∞

∣∣∣∣
∫

Ω

un|∇un|q−2∇un∇φdx

∣∣∣∣ = 0. (14)

From (12)-(14), we get that

0 = lim
ε→0

[∫

Ω

φdζ +

∫

Ω

|∇un|qφdx− µ

∫

Ω

φdν − λ

∫

Ω

f(x, un)unφdx

]
,

i.e.,

0 ≥ lim
ε→0

[∫

Ω

φdζ − µ

∫

Ω

φdν

]
= ζj − µνj .

Combing this with Lemma 1, we obtain νj ≥ µ−1Asν
p

p∗(s)

j . This result implies
that

νj = 0 or νj ≥
[
µ−1As

]N−s
p−s .

Here we use lim
ε→0

∫

Ω

|∇un|qφdx = 0 and lim
ε→0

λ

∫

Ω

f(x, un)unφdx = 0. If the

second case νj ≥ [
µ−1As

]N−s
p−s holds, for some j ∈ J , then by using Lemma 1

and the Hölder inequality, we have that

c = lim
n→∞

(
I(un)− 1

p
〈I ′(un), un〉

)

= lim
n→∞

[(
1

q
− 1

p

)∫

Ω

|∇un|qdx+

(
1

p
− 1

p∗(s)

)
µ

∫

Ω

|un|p∗(s)

|x|s dx

−λ

∫

Ω

[
F (x, un)− 1

p
f(x, un)un

]
dx

]

≥ (p− s)µ

p(N − s)

∫

Ω

dν − λ

∫

Ω

[
F (x, u)− 1

p
f(x, u)u

]
dx

≥
(

(p− s)µ

p(N − s)
− λε

)∫

Ω

|u|p∗(s)

|x|s dx+
(p− s)µ

p(N − s)

[
µ−1As

]N−s
p−s − λc (ε) |Ω|

≥ (p− s)µ

p(N − s)

[
µ−1As

]N−s
p−s − λc

(
(p− s)µ

2pλ(N − s)

)
|Ω|,

where ε = (p− s)µ/2pλ(N − s). This is impossible. Consequently, νj = 0 for all
j ∈ J and hence ∫

Ω

|un|p∗(s)

|x|s dx →
∫

Ω

|u|p∗(s)

|x|s dx.

Now un ⇀ u in H1,p
0 (Ω) and Brezis-Lieb Lemma [1] implies that

lim
n→∞

∫

Ω

|un − u|p∗(s)

|x|s dx = 0.
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Thus, we have

o(1)‖un‖ = ‖un‖p +
∫

Ω

|∇un|qdx− µ

∫

Ω

|un|p∗(s)

|x|s dx− λ

∫

Ω

f(x, un)undx

= ‖un − u‖p + ‖u‖p +
∫

Ω

|∇un|qdx−
∫

Ω

|∇u|qdx+

∫

Ω

|∇u|qdx

−µ

∫

Ω

|u|p∗(s)

|x|s dx− λ

∫

Ω

f(x, u)udx

= ‖un − u‖p + o(1)‖u‖,
here we use Brezis-Lieb Lemma [1], I ′(u) = 0 and Lemma 2.3 of [16]. Thus we

prove that {un} strongly converges to u in H1,p
0 (Ω). ¤

3. Existence of a sequence of arbitrarily small solutions

In this section, we prove the existence of infinitely many solutions of (1) which
tend to zero. Let X be a Banach space and denote

Σ := {A ⊂ X \ {0} : A is closed in X and symmetric with respect to the orgin} .
For A ∈ Σ, we define genus γ(A) as

γ(A) := inf{m ∈ N : ∃ ϕ ∈ C(A,Rm \ {0}),−ϕ(x) = ϕ(−x)}.
If there is no mapping ϕ as above for any m ∈ N , then γ(A) = +∞. Let Σk

denote the family of closed symmetric subsets A of X such that 0 6∈ A and
γ(A) ≥ k. We list some properties of the genus (see [10]).

Proposition 1. Let A and B be closed symmetric subsets of X which do not
contain the origin. Then the following hold.

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤
γ(B);

(2) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);

(3) If γ(B) < ∞, then γ(A \B) ≥ γ(A)− γ(B);
(4) Then n-dimensional sphere Sn has a genus of n+1 by the Borsuk-Ulam

Theorem;
(5) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that

Uδ(A) ∈ Σ and γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X : ‖x − A‖ ≤
δ}.

The following version of the symmetric mountain-pass lemma is due to Ka-
jikiya [10].

Lemma 3. Let E be an infinite-dimensional space and I ∈ C1(E,R) and sup-
pose the following conditions hold.
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(C1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the local
Palais-Smale condition, i.e. for some c̄ > 0, in the case when every se-
quence {uk} in E satisfying limk→∞ I(uk) = c < c̄ and limk→∞ ‖I ′(uk)‖E∗ =
0 has a convergent subsequence;

(C2) For each k ∈ N , there exists an Ak ∈ Σk such that supu∈Ak
I(u) < 0.

Then either (R1) or (R2) below holds.

(R1) There exists a sequence {uk} such that I ′(uk) = 0, I(uk) < 0 and {uk}
converges to zero.

(R2) There exist two sequences {uk} and {vk} such that I ′(uk) = 0, I(uk) = 0,
uk 6= 0, limk→∞ uk = 0, I ′(vk) = 0, I(vk) < 0, limk→∞ I(vk) = 0, and
{vk} converges to a non-zero limit.

Remark 0.5. In [10], the functional I(u) is required to satisfy the Palais-Smale
condition in global. However, if I(u) satisfies the local Palais-Smale condition
with the critical value levels c ≤ 0, the results of Kajikiya’s, i.e., [[10], Theorem
1] remain true.

Remark 0.6. From Lemma 3 we have a sequence {uk} of critical points such
that I(uk) ≤ 0, uk 6= 0 and limk→∞ uk = 0.

In order to get infinitely many solutions we need some lemmas. Under the
assumptions of Theorem 1.1, we take ε = 1

λ1
(where λ1 is given in Section 1),

then by the definition of As, (6) and Lemma 1, for λ ∈ (0, 1
λ1
) we have

I(u) =
1

p

∫

Ω

|∇u|pdx+
1

q

∫

Ω

|∇u|qdx− µ

p∗(s)

∫

Ω

|u|p∗(s)
|x|s dx− λ

∫

Ω

F (x, u)dx

≥ 1

p

∫

Ω

|∇u|pdx− µ+ λεp∗(s)
p∗(s)

∫

Ω

|u|p∗(s)
|x|s dx− λb(ε)|Ω|

≥ 1

p

∫

Ω

|∇u|pdx− µ+ p∗(s)
p∗(s)

A−p∗(s)/p
s

(∫

Ω

(|∇u|p) dx
) p∗(s)

p

− λb
(

1

λ1

)
|Ω|

= A

∫

Ω

|∇u|pdx−B

(∫

Ω

(|∇u|p) dx
) p∗(s)

p

− λC,

where

A =
1

p
, B =

µ+ p∗(s)
p∗(s)

A−p∗(s)/p
s , C = b

(
1

λ1

)
|Ω|.

Let Q(t) = Atp −Btp
∗(s) − λC. Then

I(u) ≥ Q(‖u‖).
Furthermore, there exists

λ∗ = min

{
λ1,

A(p− s)

C(N − s)

(
pA

p∗(s)B

)p/(p∗(s)−p)
}

> 0
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such that for λ ∈ (0, λ∗), Q(t) attains its positive maximum, that is, there exists

R1 =

(
pA

p∗(s)B

)1/(p∗(s)−p)

such that
e1 = Q(R1) = max

t≥0
Q(t) > 0.

Therefore, for e0 ∈ (0, e1), we may find R0 < R1 such that Q(R0) = e0. Now we
define

χ(t) =





1, 0 ≤ t ≤ R0,

Atp−λC−e1
Btp∗(s) , t ≥ R1,

C∞, χ(t) ∈ [0, 1], R0 ≤ t ≤ R1.

Then it is easy to see χ(t) ∈ [0, 1] and χ(t) is C∞. Let ϕ(u) = χ(‖u‖) and
consider the perturbation of I(u):

G(u) =
1

p

∫

Ω

|∇u|pdx+
1

q

∫

Ω

|∇u|qdx

−µϕ(u)

p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx− λϕ(u)

∫

Ω

F (x, u)dx. (15)

Then

G(u) ≥ A

∫

Ω

|∇u|pdx−Bϕ(u)

(∫

Ω

|∇u|pdx
) p∗(s)

p

− λC

= Q(‖u‖),
where Q(t) = Atp −Bχ(t)tp

∗(s) − λC and

Q(t) =

{
Q(t), t ≤ R0,

e1, t ≥ R1.

From the above arguments, we have the following:

Lemma 4. Let G(u) is defined as in (15). Then

(i) G ∈ C1(H1,p
0 (Ω), R) and G is even and bounded from below;

(ii) If G(u) < e0, then Q(‖u‖) < e0, consequently, ‖u‖ < R0 and I(u) =
G(u);

(iii) There exists λ∗ such that, for λ ∈ (0, λ∗), G satisfies a local (PS) con-
dition for

c < e0 ∈
(
0, min

{
e1,

(p− s)µ

p(N − s)

[
µ−1As

]N−s
p−s − λc

(
(p− s)µ

2pλ(N − s)

)
|Ω|

})
.

Proof. It is easy to see (i) and (ii). (iii) are consequences of (ii) and Lemma
2. ¤
Lemma 5. Assume that (H3) of Theorem 1 holds. Then for any k ∈ N , there

exists δ = δ(k) > 0 such that γ({u ∈ H1,p
0 (Ω) : G(u) ≤ −δ(k)} \ {0}) ≥ k.
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Proof. Firstly, by (H3) of Theorem 1, for any fixed u ∈ H1,p
0 (Ω), u 6= 0, we have

F (x, ρu) ≥ M(ρ)(ρu)q with M(ρ) → ∞ as ρ → 0. (16)

Secondly, given any k ∈ N , let Ek be a k-dimensional subspace of H1,p
0 (Ω). We

take u ∈ Ek with norm ‖u‖ = 1, for 0 < ρ < R0, we have

G(ρu) = I(ρu) ≤ ρp

p

∫

Ω

|∇u|pdx+
ρq

q

∫

Ω

|∇u|qdx

−µρp
∗(s)

p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx− λM(ρ)ρq
∫

Ω

|u|qdx.

Since Ek is a space of finite dimension, all the norms in Ek are equivalent. If we
define

Ak = sup

{∫

Ω

|∇u|qdx : u ∈ Ek, ‖∇u‖p = 1

}
< ∞,

Bk = inf

{∫

Ω

|u|p∗(s)

|x|s dx : u ∈ Ek, ‖∇u‖p = 1

}
> 0.

Ck = inf

{∫

Ω

|u|qdx : u ∈ Ek, ‖∇u‖p = 1

}
> 0.

From (16) and p > q, we have

G(ρu) ≤ ρp

p
+

ρq

q
Ak − µρp

∗(s)

p∗(s)
Bk − λM(ρ)ρqCk

≤ ρp

p
+ ρq

(
Ak

q
− λM(ρ)Ck

)

= −δ(k) < 0, as ρ → 0,

since lim|ρ|→0 M(ρ) = +∞. That is,

{u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈ H1,p
0 (Ω) : G(u) ≤ −δ(k)} \ {0}.

This completes the proof. ¤

Now we give the proof of Theorem 1 as following.

Proof of Theorem 1 Recall that

Σk = {A ∈ H1,p
0 (Ω) \ {0} : A is closed and A = −A, γ(A) ≥ k}

and define
ck = inf

A∈Σk

sup
u∈A

G(u).

By Lemmas 4 (1) and 5, we know that −∞ < ck < 0. Therefore, assumptions
(C1) and (C2) of Lemma 3 are satisfied. This means that G has a sequence of
solutions {un} converging to zero. Hence, Theorem 1.1 follows by Lemma 4 (2).
2
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