Abstract
In this paper, the bio-signals, such as EEG, ECG were measured with a sensor and their characters were drawn out and analyzed. With results from the analysis, four emotion of rest, concentration, tension and depression were inferred. In order to assess one's emotion, the characteristic vectors were drawn out by applying various ways, including the frequency analysis of the bio-signals like the measured EEG and HRV. RBFN, a neural network of the complex structure of unsupervised and supervised learning, was applied to classify and infer the deducted information. Through experiments, the system suggested in this thesis showed better capability to classify and infer than other systems using a different neural network. As follow-up research tasks, the recognizance rate of the measured bio-signals should be improved. Also, the technology which can be applied to the wired or wireless sensor measuring the bio-signals more easily and to wearable computing should be developed.
의료 분야의 감성 및 심리 치료를 확장하여 이와 관련된 기술을 일반 생활에 접목하고, 또한 생체신호를 이용하여 보다 쾌적한 삶의 환경을 구축하려는 연구가 활발하게 진행되고 있다. 본 논문에서는 뇌전도(EEG : electroencephalogram)와 심전도(ECG : electrocardiogram)의 심박변이도(HRV : Heart Rate Variability)의 패턴을 분석하여 평온, 집중, 긴장, 우울의 네 가지 감성을 분류하고 추론하기 위한 감성추론시스템을 설계하고 구현하였다. 많은 감성 인식 연구가 얼굴이나 음성의 인식에 의하여 이루어지고 있으며, 생체신호를 이용한 추론 연구의 경우에도, 뇌전도나 심전도 등의 단일 생체신호의 분석에 의하여 이루어지고 있다. 본 논문에서는 단일 생체신호가 아닌 뇌전도와 심전도신호를 조합하여 복합적으로 분석함으로서 단일 생체신호의 분석 연구보다 추론의 정확도를 높였으며, 감성 추론을 위한 엔진으로지도 학습과 비지도학습의 RBFN(Radial Basis Function Network) 신경망을 적용하여 오류역전파 알고리즘의 지역 최소점과 수렴속도가 느린 단점을 보완하였다.