Abstract
To complement inaccurate edge information and detect correctly the boundary of a vehicle in an image, an extended edge analysis technique is presented in this paper. The vehicle is detected using the bottom boundary generated by a vehicle and the road surface and the left and right side boundaries of the vehicle. The proposed extended edge analysis method extracts the horizontal edge by merging or dividing the nearby edges inside the region of interest set beforehand because various noises deteriorates the horizontal edge which can be a bottom boundary. The horizontal edge is considered as the bottom boundary and the vertical edges as the side boundaries of a vehicle if the extracted horizontal edge intersects with two vertical edges which satisfy the vehicle width condition at the height of the horizontal edge. This proposed algorithm is more efficient than the other existing methods when the road surface is complex. It is proved by the experiments executed on the roads having various backgrounds.
본 논문은 에지를 이용한 차량 검출 시 검출률 향상을 위해 부정확한 에지 정보를 보완하는 확장 에지 분석 기법을 제안한다. 차량은 영상에서 차량이 지면과 닺는 경계면과 좌우 경계선을 이용하여 검출한다. 제안하는 확장 에지 분석기법은 차량과 지면의 경계선을 표현하는 수평 에지가 조명이나 잡음 등으로 인해 부정확하게 얻어지는 문제를 해결하기 위해 수평에지를 양방향으로 확장하여 차량 양쪽의 경계선인 두 개의 수직에지 성분과 교차하는 점을 찾는 방법이다. 즉, 미리 설정된 관심영역 내에서 인접한 수평에지 정보를 이용하여 에지를 융합하거나 분리하는 방법을 통해 수평에지를 추출하고 추출된 수평에지 영역에서 차량 그림자 영역을 검출하여 차량 바닥선을 결정한다. 차량의 폭은 수평에지와 교차하는 수직에지들 중에서 좌우 대칭을 형성할 수 있는 에지들과 차간 거리를 고려하여 결정한다. 확장 에지 분석기반 차량 검출 기법은 복잡한 배경을 갖는 도로 영상에서 기존의 에지 정보를 이용한 차량 검출 방식보다 효율적이다. 본 논문에서 제안하는 차량 검출 기법의 우수성은 복잡한 도로 영상에서 차량 검출 실험을 통해 검증하였다.