References
- P. Baras, Non unicite des solutions d'une equation d'evolution non lineaire, Ann. Fac. Sci. Toulouse 5 (1983), 287-302. https://doi.org/10.5802/afst.600
- J. M. Bony, Calcul symbolique et propagation des singularities pour les equations aux derivees partielles non lineaires, Ann. de l'Ecole Norm. Sup. 14 (1981), 209-246. https://doi.org/10.24033/asens.1404
- H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983), 73-97.
- H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95 (1986), 185-209.
- T. Cazenave and Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1988.
- J. Y. Chemin, Perfect incompressible fluids, Clarendon Press, Oxford, 1981.
- L. C. Evans, Partial Differential Equation, American Mathematical Society, 1998.
- A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964.
- Hyuk Han and H-C Pak, Resolvent inequality of Laplacian in Besov spaces, J. Chungcheong math. Soc. 22 (2009), no. 1.
- A. Haraux and F. B. Weissler, Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189. https://doi.org/10.1512/iumj.1982.31.31016
- O. A. Ladyzhenskaya, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasi- linear Equations of Parabolic Type, American Mathematical Society, 1968.
- M. Nakamura and T. Ozawa, Nonlinear Schrodinger Equations in the Sobolev Space of Critical Order, J. Funct. Anal. 155 (1998), 364-380. https://doi.org/10.1006/jfan.1997.3236
-
H-C Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space
$B^{1}_{\infty,1}$ ($R^{n}$ ), Comm. Partial Diff. Eq. 29 (2004), 1149-1166. https://doi.org/10.1081/PDE-200033764 -
H-C Pak and Y. J. Park, Vorticity existence for an ideal incompressible °uid in
$B^{0}_{\infty,1}$ ($R^{3}$ )$\cap$ $L^{p}$ ($R^{3}$ ), J. Math. Kyoto Univ. 45 (2005), 1-20. https://doi.org/10.1215/kjm/1250282965 - E. M. Stein, Harmonic analysis; Real-variable methods, orthogonality, and os- illatory integrals, Princeton Mathematical Series, Vol. 43, 1993.
- H. Triebel, Theory of Function spaces II, Birkhauser, 1992.
- M. E. Taylor, Tools for PDE Pseudodifferential Operators, Para-differential Operators, and Layer Potentials, Mathematical surveys and Monographs, Vol. 81, American Mathematical Society, 2000.
- M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197-214. https://doi.org/10.1007/s002050050128
-
F. B. Weissler, Local existence and nonexistence for semilinear parabolic equa- tions in
$L^{p}$ , Indiana Univ. Math. J. 29 (1980), 79-102. https://doi.org/10.1512/iumj.1980.29.29007