References
- G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
- B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canad. Math. Soc. Ser. Monographs Adv. Texts 21, Wiley, New York, 1998.
- H. Chae and D. S. Kim, Identities arising from Gauss sums for finite classical groups, J. Number Theory 128 (2008), no. 7, 2010–2024. https://doi.org/10.1016/j.jnt.2008.01.001
- H. Chae and D. S. Kim, A generalization of power moments of Kloosterman sums, Arch. Math. (Basel) 89 (2007), no. 2, 152–156. https://doi.org/10.1007/s00013-007-1947-3
- P. Deligne, Applications de la formula des traces aux sommes trigonometriques, in Cohomologie Etale, Seminaire de Geometrie Algebrique du Bois-Marie SGA 4 1/2 by P. Deligne, Lecture Notes in Math. 569 (1977), 168–232.
- Y.-K. Jeong, I.-S. Lee, H. Oh, and K.-H. Park, Gauss sum for the adjoint representation of GLn(q) and SLn(q), Acta Arith. 95 (2000), no. 1, 1–16.
- D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel) 69 (1997), no. 4, 297–304. https://doi.org/10.1007/s000130050124
- D. S. Kim, Gauss sums for O−(2n, q), Acta Arith. 80 (1997), no. 4, 343–365. https://doi.org/10.4064/aa-80-4-343-365
-
D. S. Kim, Gauss sums for U(2n + 1,
$q^2$ ) J. Korean Math. Soc. 34 (1997), no. 4, 871–894. - D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55–71. https://doi.org/10.1007/BF01312455
- D. S. Kim, Gauss sums for O(2n + 1, q), Finite Fields Appl. 4 (1998), no. 1, 62–86. https://doi.org/10.1006/ffta.1997.0202
-
D. S. Kim, Gauss sums for U(2n,
$q^2$ ), Glasgow Math. J. 40 (1998), no. 1, 79–95. https://doi.org/10.1017/S0017089500032377 - D. S. Kim, Exponential sums for O−(2n, q) and their applications, Acta Arith. 97 (2001), no. 1, 67–86. https://doi.org/10.4064/aa97-1-4
- D. S. Kim, Sums for U(2n, q2) and their applications, Acta Arith. 101 (2002), no. 4, 339-363. https://doi.org/10.4064/aa101-4-4
- D. S. Kim and I.-S. Lee, Gauss sums for O+(2n, q), Acta Arith. 78 (1996), no. 1, 75–89. https://doi.org/10.4064/aa-78-1-75-89
- I.-S. Lee and K.-H. Park, Gauss sums for G2(q), Bull. Korean Math. Soc. 34 (1997), no. 2, 305–315.
- R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Math. Appl. 20, Cambridge University Press, Cambridge, 1987.
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1998.