DOI QR코드

DOI QR Code

IDENTITIES ARISING FROM GAUSS SUMS FOR SYMPLECTIC AND ORTHOGONAL GROUPS

  • Chae, Hi-Joon (Department of Mathematics Education, Hongik University) ;
  • Kim, Dae-San (Department of Mathematics, Sogang University)
  • Published : 2010.03.01

Abstract

We express Gauss sums for symplectic and orthogonal groups over finite fields as averages of exponential sums over certain maximal tori. Together with our previous results, we obtain some interesting identities involving various classical Gauss and Kloosterman sums.

Keywords

References

  1. G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
  2. B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canad. Math. Soc. Ser. Monographs Adv. Texts 21, Wiley, New York, 1998.
  3. H. Chae and D. S. Kim, Identities arising from Gauss sums for finite classical groups, J. Number Theory 128 (2008), no. 7, 2010–2024. https://doi.org/10.1016/j.jnt.2008.01.001
  4. H. Chae and D. S. Kim, A generalization of power moments of Kloosterman sums, Arch. Math. (Basel) 89 (2007), no. 2, 152–156. https://doi.org/10.1007/s00013-007-1947-3
  5. P. Deligne, Applications de la formula des traces aux sommes trigonometriques, in Cohomologie Etale, Seminaire de Geometrie Algebrique du Bois-Marie SGA 4 1/2 by P. Deligne, Lecture Notes in Math. 569 (1977), 168–232.
  6. Y.-K. Jeong, I.-S. Lee, H. Oh, and K.-H. Park, Gauss sum for the adjoint representation of GLn(q) and SLn(q), Acta Arith. 95 (2000), no. 1, 1–16.
  7. D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel) 69 (1997), no. 4, 297–304. https://doi.org/10.1007/s000130050124
  8. D. S. Kim, Gauss sums for O−(2n, q), Acta Arith. 80 (1997), no. 4, 343–365. https://doi.org/10.4064/aa-80-4-343-365
  9. D. S. Kim, Gauss sums for U(2n + 1, $q^2$) J. Korean Math. Soc. 34 (1997), no. 4, 871–894.
  10. D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55–71. https://doi.org/10.1007/BF01312455
  11. D. S. Kim, Gauss sums for O(2n + 1, q), Finite Fields Appl. 4 (1998), no. 1, 62–86. https://doi.org/10.1006/ffta.1997.0202
  12. D. S. Kim, Gauss sums for U(2n, $q^2$), Glasgow Math. J. 40 (1998), no. 1, 79–95. https://doi.org/10.1017/S0017089500032377
  13. D. S. Kim, Exponential sums for O−(2n, q) and their applications, Acta Arith. 97 (2001), no. 1, 67–86. https://doi.org/10.4064/aa97-1-4
  14. D. S. Kim, Sums for U(2n, q2) and their applications, Acta Arith. 101 (2002), no. 4, 339-363. https://doi.org/10.4064/aa101-4-4
  15. D. S. Kim and I.-S. Lee, Gauss sums for O+(2n, q), Acta Arith. 78 (1996), no. 1, 75–89. https://doi.org/10.4064/aa-78-1-75-89
  16. I.-S. Lee and K.-H. Park, Gauss sums for G2(q), Bull. Korean Math. Soc. 34 (1997), no. 2, 305–315.
  17. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Math. Appl. 20, Cambridge University Press, Cambridge, 1987.
  18. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1998.