DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Aminolysis of Aryl N-Allyl Thiocarbamates in Acetonitrile

  • Lee, Han-Na (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Oh, Hyuck-Keun (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Published : 2010.02.20

Abstract

Keywords

References

  1. Koh, H. J.; Kim, O. K.; Lee, H. W.; Lee, I. J. Phys. Org. Chem. 1997, 10, 725. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  2. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018. https://doi.org/10.1021/ja00829a034
  3. Castro, E. A.; Ureta, C. J. Chem. Soc. Perkin Trans 2 1991, 63.
  4. Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 657.
  5. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  6. Um, I-H.; Kwon, H-J.; Kwon, D-S.; Park, J-Y. J. Chem. Res. 1995, (S) 301, (M) 1801.
  7. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970. https://doi.org/10.1021/ja00463a033
  8. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000. https://doi.org/10.1021/jo0100695
  9. Bond, P. M.; Moodie, R. B. J. Chem. Soc. Perkin Trans. 2 1976, 679.
  10. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  11. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  12. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557. https://doi.org/10.2174/1385272043370753
  13. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker : New York, 1969; Chapter 4.
  14. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
  15. Spillane, W. J.; Hagan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc. Perkin Trans. 2 1996, 2099.
  16. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  17. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2001, 66, 3129. https://doi.org/10.1021/jo010022j
  18. Stefanidas, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650. https://doi.org/10.1021/ja00058a006
  19. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597. https://doi.org/10.1021/ja00336a047
  20. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647. https://doi.org/10.1021/ja00189a045
  21. Colthurst, M. J.; Nanni, M.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1996, 2285.
  22. Maude, A. B.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1997, 179.
  23. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1998, 63, 6820. https://doi.org/10.1021/jo980284u
  24. Castro, E. A. Chem. Rev. 1991, 99, 3505. https://doi.org/10.1021/cr990001d
  25. Yamabe, S.; Minato, T. J. Org. Chem. 1983, 48, 2972. https://doi.org/10.1021/jo00166a007
  26. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  27. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B-S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  28. Lee, I. Int. Rev. Phys. Chem. 2003, 22, 263. https://doi.org/10.1080/0144235031000086058
  29. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  30. Castro, E. A.; Ruiz, M. G.; Santos, J. G. Int. J. Chem. Kinet. 2001, 33, 281. https://doi.org/10.1002/kin.1022
  31. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1995, 2263.
  32. Castro, E. A.; Ruiz, M. G.; Salinas, S.; Santos, J. G. J. Org. Chem. 1999, 64, 4817. https://doi.org/10.1021/jo990146k
  33. Oh, H. K.; Lee, J-Y.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V
  34. Castro, E. A.; Cubillas, M.; Munoz, G.; Santos, J. G. Int. J. Chem. Kinet. 1994, 26, 571. https://doi.org/10.1002/kin.550260510
  35. Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of Organic Chemistry; Plenum: New York, 1975; Chapter 5.
  36. Lee, I. Chem. Soc. Rev. 1995, 24, 571.
  37. Lee, I.; Shin, C. S.; Chung, S. Y.; Kim, H. Y.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1988, 1919.
  38. Guggenheim, E. A. Philos. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
  39. Oh, H. K.; Hong, S. K. Bull. Korean Chem. Soc. 2009, 30, 2453. https://doi.org/10.5012/bkcs.2009.30.10.2453
  40. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2008, 29, 1621. https://doi.org/10.5012/bkcs.2008.29.8.1621

Cited by

  1. Kinetics and Mechanism of the Aminolysis of Aryl N-Isopropyl Thiocarbamates in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4095
  2. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  3. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  4. Nucleophilic Substitution Reactions of O-Aryl N-phenyl Thioncarbamates with Benzylamines in Acetonitrile vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2427
  5. -Phenylcarbamate via an Isocyanate Intermediate: Theory and Experiment vol.78, pp.13, 2013, https://doi.org/10.1021/jo4002068
  6. Nucleophilic Substitution Reactions of 2,4-Dinitrophenyl X-Substituted-Benzenesulfonates and Y-Substituted-Phenyl 4-Nitrobenzenesulfonates with Azide Ion: Regioselectivity and Reaction Mechanism vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10259
  7. -3,4-Dinitrophenyl Thionobenzoate: Effect of Amine Nature on Reactivity and Reaction Mechanism vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10293
  8. Aminolysis of a model carbamate insecticide: a theoretical reaction mechanism study of carbaryl via an isocyanate intermediate vol.136, pp.6, 2017, https://doi.org/10.1007/s00214-017-2102-2
  9. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Diphenylphosphinothioates: Steric Hindrance versus Nucleofugality in Nucleophilic Substitution Reactions vol.32, pp.6, 2010, https://doi.org/10.5012/bkcs.2011.32.6.2117
  10. Aminolysis of S-4-Nitrophenyl X-Substituted Thiobenzoates: Effect of Nonleaving-Group Substituents on Reactivity and Mechanism vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1153
  11. Pyridinolysis of 2,4-Dinitrophenyl Phenyl Thionocarbonate: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1165
  12. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2010, https://doi.org/10.5012/bkcs.2012.33.9.2971
  13. Reactions of 4‐NITROPHENYL 5‐substituted Furan‐2‐carboxylates with R 2 NH / R 2 NH 2+ in 20 mol% DMSOhttps://doi.org/10.1002/bkcs.12296