Notes

Kinetics and Mechanism of the Aminolysis of Aryl N-Allyl Thiocarbamates in Acetonitrile

Hanna Lee and Hyuck Keun Oh*

Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University, Chonju 561-756, Korea. *E-mail: ohkeun@chonbuk.ac.kr Received November 18, 2009, Accepted December 10, 2009

Key Words: Nucleophilic substitution, Aryl *N*-allyl thiocarbamates, Cross-interaction constant, Kinetic isotope effects, Concerted mechanism

The aminolysis mechanism of aryl carbamates, 1, is quite similar to that of aryl carbonates, 2, and aryl esters, 3.¹⁻³ A change in the mechanism of the aminolysis with benzylamines in acetonitrile has been observed from stepwise through a tetrahedral intermediate, T^{\pm} , to concerted for the carbamates¹ (1 with R = Ph) as well as for the carbonates² (2 with R = Et) when leaving group is changed from phenoxides (a : ^{-}OAr) to thiophenoxides (b : ^{-}SAr). This suggests that the strength of push provided to expel the leaving group from T^{\pm} by PhNH is similar to that by EtO, and the destabilization of T^{\pm} due to this push is strong enough for ^{-}SAr but is too weak for ^{-}OAr to lead the aminolysis to a concerted process.

In this work, we carried out kinetic studies on the aminolysis of aryl *N*-allyl thiocarbamates (**1b** : **AATC**) with benzylamines in acetonitrile at 40.0 °C, eq 1. The first purpose of the present work is to establish the aminolysis reaction mechanism for eq. 1 and to see whether the mechanistic change from a stepwise to a concerted by the change $2a \rightarrow 2b$ is also carried on to the change $1a \rightarrow 1b$ or not. In this work, we varied substituents in the nucleophile (X) and leaving group (Z) and the rate constants, k_2 , are subjected to a multiple regression analysis to determine the crossinteraction constant, ${}^4\rho_{XZ}$ in eqs 2. For a concerted mechanism the sign of ρ_{XZ} was found to be negative⁴ and the reactivityselectivity principle (RSP) failed.⁵

$$CH_{2}=CHCH_{2}NHC-SC_{6}H_{4}Z + 2XC_{6}H_{4}CH_{2}NH_{2} \xrightarrow{MeCN}$$

$$O$$

$$CH_{2}=CHCH_{2}NHCNHCH_{2}C_{6}H_{4}X + XC_{6}H_{4}CH_{2}N^{+}H_{3} + SArZ$$

$$(1)$$

$$\log(k_{XZ}/k_{HH}) = \rho_X \sigma_X + \rho_Z \sigma_Z + \rho_{XZ} \sigma_X \sigma_Z$$
(2a)

$$\rho_{\rm XZ} = \partial \rho_Z / \partial \sigma_{\rm X} = \partial \rho_{\rm Y} / \partial \sigma_Z \tag{2b}$$

Results and Discussion

The reactions of aryl *N*-allyl thiocarbamates (AATC : CH₂= CHCH₂HNC(=O)SC₆H₄Z) with X-benzylamines (BA) in acetonitrile follow a clear second-order kinetics, eqs. 3. Unlike in the aminolysis of aryl *N*-phenylcarbamates¹ (APC : PhNHC (=O)OC₆H₄Z) we found no base catalysis by the amine. The rate constants, k_2 , determined are summarized in Table 1 together with selectivity parameters ρ_X , β_X , ρ_Z , and β_Z . The β_X (β_{nuc}) values are obtained by using the pK_a values of benzylamines in water. This procedure was found to be reliable since the pK_a values in acetonitrile and in water vary in parallel, although the absolute values are different.⁶ For the β_Z (β_{lg}) values, a factor of 0.62 was multiplied to all the β_Z values determined using the pK_a (H₂O) values.⁷

$$rate = k_{obs} [AATC]$$
(3a)

$$k_{\rm obs} = k_2 \,[{\rm BA}] \tag{3b}$$

Since strong destabilization of T^{\pm} should be provided by a stronger push to expel the leaving group by the amino nonleaving group, $R = NH_2$ in **1b**, the aminolysis of AATC (**1b** with $R = CH_2 = CHCH_2$ -) with benzylamines in acetonitrile is proposed to proceed by a concerted mechanism. The β_Z values in Table 1 are within the range of values that are expected for a concerted mechanism.⁸ Further supports for the concerted mechanism is provided by a negative ρ_{XZ} (-0.43) values, and failure of the reactivity-selectivity principle (RSP).⁹ The selectivities (ρ and β values in Table 1) are greater for the faster reactions. This type of anti-RSP is considered another criterion for the concerted aminolysis.⁵

Reference to Table 1 reveals that the β_X values are $1.42 \sim 1.60$ which are rather greater than the values normally expected for the concerted aminolysis processes, $\beta_X = 0.4 \sim 0.7^9$ However, β_X values smaller than 0.4^{10} as well as those larger than 0.7^{11} have also been observed for the concerted reactions. Especially in solvents less polar than water, larger β_X (1.3 ~ 1.6)¹² are often obtained for the concerted processes. Thus the

Table 1. The Second Order Rate Constants, $k_2 (10^2 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1})$ for the Reactions of Z-Aryl N-Allyl Thiocarbamates with X-Benzylamines in Acetonitrile at 40.0 °C

V	Z				a	0 ^b
А	<i>p</i> -Me	Н	<i>p-</i> Cl	<i>p</i> -Br	- ρz	ρz
<i>p</i> -OMe	$ 1.14 \\ 0.764^c \\ 0.519^d $	2.74	9.55	10.7 7.28^{c} 5.02^{d}	2.39 ± 0.02	-0.99 ± 0.05
<i>p</i> -Me	0.757	1.79	6.30	6.98	2.37 ± 0.02	-0.98 ± 0.04
Н	0.440	0.988	3.32	3.76	2.29 ± 0.03	-0.94 ± 0.04
<i>p</i> -Cl	0.225 0.153 ^c 0.103 ^d	0.501	1.56	$1.67 \\ 1.10^{c} \\ 0.737^{d}$	2.15 ± 0.01	-0.90 ± 0.04
<i>m</i> -Cl	0.135	0.285	0.893	1.00	2.13 ± 0.03	-0.88 ± 0.03
$ ho_{ m X}{}^{a}$ $ ho_{ m X}{}^{f}$	-1.41 ± 0.04 1.42 ± 0.03	-1.49 ± 0.02 1.50 ± 0.03	-1.58 ± 0.02 1.59 ± 0.03	-1.59 ± 0.01 1.60 ± 0.02	$\rho_{\rm XZ}^{\ e} = -0$.43 ± 0.13

^{*a*}The σ values were taken from Hansch, C.; Leo, A.; Taft, R. W. *Chem. Rev.* **1991**, *91*, 166. Correlation coefficients were better than 0.998 in all cases. ^{*b*}The pK_a values were taken from Albert, A.; Serjeant, E. P. *The Determination of Ionization Constants*; 3rd ed., Chapman and Hall: London, p145. Correlation coefficients were better than 0.997 in all cases. ^{*c*}At 30 °C. ^{*d*}At 20 °C. ^{*c*}Calculated by a multiple regression analysis using eq 2a. r = 0.999, n = 20 and F_{calc} = 1410 (F_{tab} = 10.66 at the 99.9% confidence level). ^{*f*}The pK_a values were taken from Fischer, A.; Galloway, W. J.; Vaughan, J. *J. Chem. Soc.* **1964**, 3588. Correlation coefficients were better than 0.997 in all cases.

Table 2. The Kinetic Isotope Effects for the Reactions of Z-Phenyl N-Allyl Thiocarbamates with X-Benzylamines in Acetonitrile at 40.0 °C

Х	Ζ	$k_{\rm H} (\times 10^2 {\rm M}^{-1}{\rm s}^{-1})$	$k_{\rm D} (\times 10^2 {\rm M}^{-1}{\rm s}^{-1})$	$k_{ m H}/k_{ m D}$
<i>p</i> -OMe	<i>p</i> -Me	1.14 (±0.02)	0.844 (±0.008)	1.35 ± 0.02^{a}
<i>p</i> -OMe	Н	2.74 (±0.04)	1.94 (±0.03)	1.41 ± 0.02
<i>p</i> -OMe	<i>p</i> -Cl	9.55 (±0.08)	6.49 (±0.06)	1.47 ± 0.03
<i>p</i> -OMe	<i>p</i> -Br	10.7 (±0.10)	6.90 (±0.07)	1.55 ± 0.03
p-Cl	<i>p</i> -Me	0.225 (±0.002)	0.163 (±0.001)	1.38 ± 0.03
p-Cl	Η	0.501 (±0.003)	0.343 (±0.003)	1.46 ± 0.02
p-Cl	<i>p</i> -Cl	1.56 (±0.01)	1.01 (±0.01)	1.53 ± 0.02
p-Cl	<i>p</i> -Br	1.67 (±0.02)	1.03 (±0.01)	1.61 ± 0.03

^aStandard deviations.

large β_X values in the present work may be due to the less polar solvent used, acetonitrile. The relatively large β_X values may reflect rather tight bond formation in the TS.

Strong destabilization incurred by powerful nucleofugality of benzylamines from T^{\pm} is known to cause the aminolysis to proceed by a concerted mechanism.¹³ The order of the increasing rate of expulsion of amines from T^{\pm} is reported as ⁵ pyridines < anilines < secondary alicyclic amines < quinuclidines < benzylamines. Moreover, it has been shown that carbonyl (C=O) has a greater proclivity for the concerted mechanism than thio-carbonyl (C=S) group¹⁴ due to a narrower energy gap between π^* and σ^* levels, $\Delta \varepsilon = \varepsilon(\pi^*_{C=O}) - \varepsilon(\sigma^*_{C-S}) < \Delta \varepsilon = \varepsilon(\pi^*_{C=S}) - \varepsilon(\sigma^*_{C-S})$, enabling efficient mixing of the two antibonding orbitals. Thus, concerted mechanisms are found for the aminolyses of $S-(2,4-\text{dinitrophenyl})^{14}$ and $S-(2,4,6-\text{trinitrophenyl})^{3b}$ O-ethylthiocarbonates in contrast to the stepwise mechanisms for the corresponding dithiocarbonates.¹⁶ Less polar solvents are also conductive to a concerted mechanism as observed for the aminolysis of carbonates from stepwise in water to concerted in acetonitrile.¹⁷ For example, the aminolysis of 2,4,6-trinitrophenyl

O-ethyl dithiocarbonates is stepwise¹⁸ (biphasic Brönsted plot) in water, but is concerted ($\beta_X = 0.53$) in a less polar solvent (44 wt % aqueous EtOH).¹⁹ The change of solvent from water to a less polar solvent such as MeCN destabilizes the zwitterionic intermediate by enhancing the rate of expulsion of the amine from T[±], and renders the intermediate, T[±], more unstable kinetically so that a concerted mechanism is enforced.¹⁹

The kinetic isotope effects, $k_{\rm H}/k_{\rm D}$, involving deuterated benzylamines (XC₆H₄CH₂ND₂)²⁰ in Table 2 are larger than unity (1.35 ~ 1.61) indicating that a proton transfer is involved in the TS, which in turn suggests that a hydrogen bonded cyclic TS. The relatively low ΔH^{\pm} with large negative ΔS^{\pm} values in

Table 3 are consistent with this proposed TS structure. The ΔH^{\pm} values are small due to a large energy gain in C-N bond formation relative to energy loss in C-S bond cleavage in the TS and also the assistance in the C-S bond cleavage by the hydrogen bonding, and the ΔS^{\pm} values are large negative due to the strained cyclic four-membered TS structure.

In summary, we propose a concerted mechanism with a hydrogen bonded cyclic transition state for the aminolysis of aryl *N*-allyl thiocarbamates with benzylamines in acetonitrile based on the negative cross-interaction constant, failure of RSP,

Table 3. Activation Parameters^a for the Reactions of Z-Phenyl N-Allyl

 Thiocarbamates with X-Benzylamines in Acetonitrile

_				
	Х	Z	$\Delta H^{\pm}/\text{kcal mol}^{-1}$	$-\Delta S^{\pm}/\text{cal mol}^{-1} \text{ K}^{-1}$
	<i>p</i> -OMe	<i>p</i> -Me	6.6	46
	<i>p</i> -OMe	<i>p</i> -Br	6.2	43
	p-Cl	<i>p</i> -Me	6.4	50
	<i>p</i> -Cl	<i>p</i> -Br	6.6	46

^{*a*}Calculated by the Eyring equation. The maximum errors calculated (by the method of Wiberg, K. B. *Physical Organic Chemistry*; Wiley: New York, 1964, p 378) are ± 1.0 kcal mol⁻¹ and ± 4 e.u. for ΔH^{\pm} and ΔS^{\pm} , respectively.

the kinetic isotope effects greater than unity and relatively low ΔH^{\dagger} with large negative ΔS^{\dagger} values.

Experimental Section

Materials. GR grade acetonitrile was used after three distillations. GR grade benzylamine nucleophiles were used after recrystallization.

Substrates.

Phenyl *N***-allyl thiocarbamate.** A solution of thiophenol (0.01 mol) in dry toluene (10 mL) was added to a solution of allyl isocyanate (0.01 mol). A catalytic quantity (0.5 mL) of pyridine was added and the solution refluxed for 2 h. On evaporation of the solvent *in vacuo*, the thiocarbamate precipitated and was recrystallized from chloroform-pentane. The other substituted phenyl *N*-allyl thiocarbamates were prepared in an analogous manner and recrystallized from chloroform-pentane. The substrates synthesized were confirmed by spectral and elemental analysis as follows.

CH₂=CHCH₂-NHC(=O)SC₆H₄-*p***-CH₃: mp 80 - 82 °C; ¹H NMR (400 MHz, CDCl₃) \delta 2.31 (3H, s, CH₃), 3.78 (2H, t, CH₂), 5.01 (2H, t, =CH₂), 5.70 (1H, m, =CH). 6.22 (1H, s, NH), 7.20-7.52 (4H, m, C₆H₄); ¹³C NMR (100.4 MHz, CDCl₃) \delta 166.5, 140.1, 135.0, 130.3, 124.8, 133.4, 116.5, 43.6, 21.3; v_{max} (KBr), 3307 (NH), 2834 (CH, aromatic), 1651 (C=O), 598 (C-S); MS** *m***/z 207 (M⁺). Anal. Calcd for C₁₁H₁₃NOS : C, 63.7; H, 6.31. Found; C, 63.9; H, 6.32.**

CH₂=CHCH₂-NHC(=O)SC₆H₅: mp 65 - 67 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.71 (2H. t, CH₂), 4.91 (2H, t, =CH₂), 5.61 (1H, m, =CH). 6.25 (1H, s, NH), 7.29-7.65 (4H, m, C₆H₄); ¹³C NMR (100.4 MHz, CDCl₃) δ 165.8, 135.1, 133.2, 129.2, 129.0, 128.1, 116.2, 43.4; v_{max}(KBr), 3306 (NH), 2835 (CH, aromatic), 1681 (C=O), 595 (C-S); MS *m*/z 193 (M⁺). Anal. Calcd C₁₀H₁₁NOS : C, 62.1; H, 5.70. Found; C, 62.3; H, 5.72.

CH₂=CHCH₂-NHC(=O)SC₆H₄-*p***-Cl**: mp 114 - 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (2H. t, CH₂), 5.09 (2H, t, =CH₂), 5.74 (1H, m, =CH). 6.21 (1H, s, NH), 7.34-7.52 (4H, m, C₆H₄); ¹³C NMR (100.4 MHz, CDCl₃) δ 165.1, 136.4, 135.8, 133.1, 129.4, 126.6, 116.9, 43.8; v_{max} (KBr), 3304 (NH), 2832 (CH, aromatic), 1656 (C=O), 601 (C-S); MS *m*/z 227 (M⁺). Anal. Calcd C₁₀H₁₀ClNOS : C, 52.7; H, 4.41. Found; C, 52.9; H, 4.42.

CH₂=CHCH₂-NHC(=O)SC₆H₄-*p***-Br: mp 120 - 122 °C; ¹H NMR (400 MHz, CDCl₃) \delta 3.86 (2H. t, CH₂), 5.05 (2H, t, =CH₂), 5.75 (1H, m, =CH). 6.28 (1H, s, NH), 7.38-7.59 (4H, m, C₆H₄); ¹³C NMR (100.4 MHz, CDCl₃) \delta 165.0, 136.7, 133.2, 132.4,** 127.3, 124.2, 117.0, 43.9; v_{max} (KBr), 3306 (NH), 2833 (CH, aromatic), 1657 (C=O), 595 (C-S); MS *m*/z 272 (M⁺). Anal. Calcd C₁₀H₁₀BrNOS : C, 44.1; H, 3.70. Found; C, 44.3; H, 3.71.

Kinetic measurement. Rates were measured conductometrically in acetonitrile. The conductivity bridge used in this work was a homemade computer-automatic A/D converter conductivity bridge. Pseudo-first-order rate constants, k_{obsd} , were determined by the Guggenheim method²¹ with large excess of pyridine. Second order rate constants, k_2 , were obtained from the slope of a plot of k_{obsd} vs. [BA] with more than five concentrations of benzylamine. The k_2 values in Table 1 are the averages of more than three runs and were reproducible to within $\pm 3\%$.

Product analysis. The substrate phenyl *N*-allyl thiocabamate (0.01 mol) was reacted with excess benzylamine (0.1 mol) with stirring for more than 15 half-lives at 40.0 °C in acetonitrile (*ca.* 200 mL) and the products were isolated by evaporating the solvent under reduced pressure. The product mixture was subjected to column chromatography (silica gel, 20% ethyl acetate-*n*-hexane). Analysis of the product gave the following results.

CH₂=CHCH₂-NHC(=O)NHCH₂C₆H₅: mp 89 - 91 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.52 (2H. t, CH₂), 4.05 (2H, d, CH₂), 4.90 (2H, m, =CH₂), 5.88 (1H, m, =CH). 6.19 (1H, s, NH), 7.05-7.35 (5H, m, C₆H₅); ¹³C NMR (100.4 MHz, CDCl₃) δ 147.3, 127.9, 123.8, 116.8, 115.5, 115.3, 103.4, 32.4, 31.0; v_{max} (KBr), 3322 (NH), 2837 (CH, aromatic), 1622 (C=O), 1247 (C-N); MS *m*/z 188 (M⁺). Anal. Calcd for C₁₁H₁₂N₂O : C, 70.2; H, 6.41. Found; C, 70.4; H, 6.42.

Acknowledgments. This paper was supported by research fund of Chonbuk National University.

References

- Koh, H. J.; Kim, O. K.; Lee, H. W.; Lee, I. J. Phys. Org. Chem. 1997, 10, 725.
- (a) Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018. (b) Castro, E. A.; Ureta, C. J. Chem. Soc. Perkin Trans 2 1991, 63. (c) Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 657. (d) Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. (e) Um, I-H.; Kwon, H-J.; Kwon, D-S.; Park, J-Y. J. Chem. Res. 1995, (S) 301, (M) 1801.
- (a) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970.
 (b) Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000. (c) Bond, P. M.; Moodie, R. B. J. Chem. Soc. Perkin Trans. 2 1976, 679.
- (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317. (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
- 5. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557.
- (a) Ritchie, C. D. In *Solute-Solvent Interactions*; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker : New York, 1969; Chapter 4.
 (b) Coetzee, J. F. *Prog. Phys. Org. Chem.* **1967**, *4*, 54. (c) Spillane, W. J.; Hagan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc. Perkin Trans. 2 **1996**, 2099.
- Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874.
- (a) Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2001, 66, 3129. (b) Stefanidas, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650.
- 9. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597.
- (a) Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647. (b) Colthurst, M. J.; Nanni, M.; Williams, A. J.

478 Bull. Korean Chem. Soc. 2010, Vol. 31, No. 2

Notes

Chem. Soc. Perkin Trans. 2 1996, 2285.

- (a) Maude, A. B.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1997, 179. (b) Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1998, 63, 6820.
- 12. Castro, E. A. Chem. Rev. 1991, 99, 3505.
- (a) Yamabe, S.; Minato, T. J. Org. Chem. 1983, 48, 2972. (b) Lee,
 I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. (c) Lee,
 I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee,
 B-S. J. Am. Chem. Soc. 2000, 122, 11162. (d) Lee, I. Int. Rev. Phys. Chem. 2003, 22, 263.
- Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459.
- (a) Castro, E. A.; Ruiz, M. G.; Santos, J. G. Int. J. Chem. Kinet.
 2001, 33, 281. (b) Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J.

Chem. Soc. Perkin Trans. 2 **1995**, 2263. (c) Castro, E. A.; Ruiz, M. G.; Salinas, S.; Santos, J. G. *J. Org. Chem.* **1999**, *64*, 4817.

- Oh, H. K.; Lee, J-Y.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419.
- Castro, E. A.; Cubillas, M.; Munoz, G.; Santos, J. G. Int. J. Chem. Kinet. 1994, 26, 571.
- Dewar, M. J. S.; Dougherty, R. C. *The PMO Theory of Organic Chemistry*; Plenum: New York, 1975; Chapter 5.
- 19. Lee, I. Chem. Soc. Rev. 1995, 24, 571.
- Lee, I.; Shin, C. S.; Chung, S. Y.; Kim, H. Y.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1988, 1919.
- (a) Guggenheim, E. A. *Philos. Mag.* **1926**, *2*, 538. (b) Oh, H. K.; Hong, S. K. *Bull. Korean Chem. Soc.* **2009**, *30*, 2453. (c) Jeong, K. S.; Oh, H. K. *Bull. Korean Chem. Soc.* **2008**, *29*, 1621.