DOI QR코드

DOI QR Code

Preparation and Electrochemical Performance of CNT Electrode with Deposited Titanium Dioxide for Electrochemical Capacitor

  • Kim, Hong-Il (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Han-Joo (Pureechem Co., Ltd.) ;
  • Morita, Masayuki (Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi-University) ;
  • Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Published : 2010.02.20

Abstract

To reduce polarization of electrochemical capacitor based on carbon nanotube, titanium oxide nanoparticles were deposited by ultrasound. The pore distribution of $TiO_2$/CNT nanoparticle exhibited surface area of $341\;m^2g^{-1}$ when $TiO_2$ content was 4 wt %, which was better than that of pristine CNT with surface area of $188\;m^2g^{-1}$. The analyses indicated that titanium oxide (particle diameter < 20 nm) was deposited on the CNT surface. The electrochemical performance was evaluated by using cyclic voltammetry (CV), impedance measurement, and constant-current charge/discharge cycling techniques. The $TiO_2$/CNT composite electrode showed relatively better electrochemical behaviors than CNT electrode by increasing the specific capacitance from $22\;Fg^{-1}$ to $37\;Fg^{-1}$ in 1 M $H_2SO_4$ solution. A symmetric cell assembled with the composite electrodes showed the specific capacitance value of $11\;Fg^{-1}$ at a current loading of $0.5\;mAcm^{-2}$ during initial cycling.

Keywords

References

  1. Conway, B. E. Electrochemical Supercapacitor-Scientific Fundamentals and Technological Application; Kluwer Academic: New York, 1999; p 29-31.
  2. Koetz, R.; Carlen M. Electrochimica Acta 2000, 45, 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
  3. Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  4. Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Electrochimica Acta 2005, 50, 2799. https://doi.org/10.1016/j.electacta.2004.11.027
  5. Liang, H.; Chen, F.; Li, R.; Wang, L.; Deng, Z. Electrochimica Acta 2004, 49, 3463. https://doi.org/10.1016/j.electacta.2004.03.016
  6. Morita, M.; Goto, M.; Matsuda, Y. J. Appl. Electrochem. 1992, 22, 901. https://doi.org/10.1007/BF01024137
  7. Tanahashi, T.; Yoshida, A.; Nishino, A. J. Electrochem. Soc. 1990, 137, 3052. https://doi.org/10.1149/1.2086158
  8. Rudge, A.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. Electrochimica Acta 1994, 39, 273. https://doi.org/10.1016/0013-4686(94)80063-4
  9. Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. J. Power Sources 1994, 47, 89. https://doi.org/10.1016/0378-7753(94)80053-7
  10. Hu, C. C.; Su, J. H.; Wen, T. C. J. of Physics and Chemistry of Solids 2007, 68, 2353. https://doi.org/10.1016/j.jpcs.2007.07.002
  11. Zhou, Y. K.; He, B. L.; Zhou, W. J.; Huang, J.; Li, X. H.; Wu, B.; Li, H. L. Electrochimica Acta 2004, 49, 257. https://doi.org/10.1016/j.electacta.2003.08.007
  12. Ye, J. S.; Liu, X.; Cui, H. F.; Zhang, W. D.; Sheu, F. S.; Lim, T. M. Electrochemistry Communications 2005, 7, 249. https://doi.org/10.1016/j.elecom.2005.01.008
  13. Show, Y.; Imaizumi, K. Diamond & Related Materials 2007, 16, 1154. https://doi.org/10.1016/j.diamond.2006.11.005
  14. Kim, J. H.; Nam, K. W.; Ma, S. B.; Kim, K. B. Carbon 2006, 44, 1963. https://doi.org/10.1016/j.carbon.2006.02.002
  15. Frackowiak, E.; Metenier, K.; Bertagna, V.; Béguin, F. Appl. Phys. Lett. 2000, 77, 2421. https://doi.org/10.1063/1.1290146
  16. Frackowiak, E.; Jurewicz, K.; Delpeux, S.; Béguin, F. J. Power Sources 2001, 97/98, 822. https://doi.org/10.1016/S0378-7753(01)00736-4
  17. Rong, C.; Xien, H. J. of Colloid and Interface Science 2005, 290, 190. https://doi.org/10.1016/j.jcis.2005.04.022
  18. Tashima, D.; Kurosawatsu, K.; Uota, M.; Karashima, T.; Otsubo, M.; Honda, C.; Sung, Y. M. Thin Solid Films 2007, 515, 4234. https://doi.org/10.1016/j.tsf.2006.02.043
  19. Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L. Carbon 2007, 45, 717. https://doi.org/10.1016/j.carbon.2006.11.028
  20. Qu, D.; Shi, H. J. Power Sources 1998, 74, 99. https://doi.org/10.1016/S0378-7753(98)00038-X
  21. Ryoo, M. W.; Kim, J. H.; Seo, G. J. of Colloid and Interface Science 2003, 264, 414. https://doi.org/10.1016/S0021-9797(03)00375-8
  22. Huang, C. W.; Chuang, C. M.; Ting, J. M.; Teng, H. J. of Power Sources 2008, 183, 406. https://doi.org/10.1016/j.jpowsour.2008.04.075

Cited by

  1. Study of carbon aerogel-activated carbon composite electrodes for capacitive deionization application vol.49, pp.1-3, 2012, https://doi.org/10.1080/19443994.2012.708210
  2. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power vol.16, pp.22, 2014, https://doi.org/10.1039/C4CP00923A
  3. Degradation of azo dye in aqueous solution using Ti anode coated with MWCNTs–TiO2 vol.12, pp.1, 2015, https://doi.org/10.1007/s13738-014-0471-1
  4. Electrochemistry of TiO2/CdS composite electrodes for supercapacitor applications vol.47, pp.8, 2017, https://doi.org/10.1007/s10800-017-1092-z
  5. The effect of temperature deposited on the performance of ZnO-CNT-graphite for supercapacitors vol.877, pp.None, 2010, https://doi.org/10.1088/1742-6596/877/1/012006
  6. TiO2 coated Si nanowire electrodes for electrochemical double layer capacitors in room temperature ionic liquid vol.50, pp.41, 2010, https://doi.org/10.1088/1361-6463/aa8717