DOI QR코드

DOI QR Code

Synthesis, Characterization and Catalytic Activity of Ce1MgxZr1-xO2 (CMZO) Solid Heterogeneous Catalyst for the Synthesis of 5-Arylidine Barbituric acid Derivatives

  • Rathod, Sandip B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Gambhire, Anil B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Arbad, Balasaheb R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Lande, Machhindra K. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Published : 2010.02.20

Abstract

A series of $Ce_1Mg_xZr_{1-x}O_2$ (CMZO) mixed metal oxide with different molar ratio were prepared by simple co-precipitation method. The prepared materials were tested for their catalytic activity performance using Knoevenagel condensation of various aromatic aldehydes with barbituric acid under solvent-free condition in microwave. The best catalytic activity was obtained with CMZO (1:0.6:0.4). The synthesized materials were characterized by using XRD, FT-IR, SEM-EDS techniques.

Keywords

References

  1. Akopan, L. K.; Adzhibekyan, A. S.; Dorkinyan, G. A.; Tumasyan, E. A.; Boil. Zh. Arm.; 1976, 29, 80; Chem. Abstr. 1976, 85, 72068f.
  2. Jursic, B. S. J. Heterocyl.Chem. 2001, 38, 655. https://doi.org/10.1002/jhet.5570380318
  3. Vvedenskii, V. M. Geterotsikl Soedin. 1969, 6, 1092.
  4. Dewan, S. K.; Singh, R. Synth. Commun. 2000, 30, 1295. https://doi.org/10.1080/00397910008087151
  5. Wan, Y.; Chen, J.; Zhuang, Q. Y.; Shi, D. Q. J. Xuzhou Normal Univ. 2004, 22, 47.
  6. Li, G. S.; Li, J. C.; Wang, C.; Feng, S.; Li, X. L. Chem. J. Chin. Univ. 2001, 22, 2042.
  7. Li, J. T.; Dai, H. G.; Liu, D.; Li, T. S. Synth. Commun. 2006, 36, 789. https://doi.org/10.1080/00397910500451324
  8. Shi, D. Q.; Chen, J.; Wang X. S. Chin. Chem. Lett. 2003, 14, 1242.
  9. Tannaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025. https://doi.org/10.1021/cr940089p
  10. Stadler, A.; Kappe, C. O. Comb. Chem. 2001, 3, 624. https://doi.org/10.1021/cc010044j
  11. Lew, A.; Krutzik, P. O.; Hart, M. E.; Hamberlin, R. A. J. Comb. Chem. 2002, 4, 95. https://doi.org/10.1021/cc010048o
  12. Al-Obeidi, F.; Austin, R. E.; Okonya, J. F.; Bond, D. R. S. Mini. Rev. Med. Chem. 2003, 3, 459.
  13. Blackwell, H. E. Org. Biomol. Chem. 2003, 1, 1251. https://doi.org/10.1039/b301432k
  14. Swamy, K. M. K.; Yeh, W. B.; Lin, M. J.; Sun, C. M. Curr. Med. Chem. 2003, 10, 2403 and references cited therein. https://doi.org/10.2174/0929867033456594
  15. Larhed, M.; Hallberg, A. Drug Discov. Today 2001, 6, 406. https://doi.org/10.1016/S1359-6446(01)01735-4
  16. Wathey, B.; Tierney, J.; Lidstro, M. P.; Westman, J. Drug Discov. Today 2002, 7, 373. https://doi.org/10.1016/S1359-6446(02)02178-5
  17. Kung, H. H. Transition metal oxides: surface chemistry and catalysis 1989, 45, 1. https://doi.org/10.1016/S0167-2991(08)60924-6
  18. Henrich, V. E.; Cox, P. A. The surface science of metal oxides; Cambridge University Press: Cambridge, UK, 1994.
  19. Noguera, C. Physics and Chemistry at oxide surface; Cambridge University press: Cambridge, UK, 1996.
  20. Reddy B. M. (In press) Redox properties of Metal oxides, Chemistry and Application; Fierro, J. L. G. Ed., Marcel Dkker Inc.
  21. Spasova, I.; Ivanov, G.; Georgescu, V.; Mehandjiev, D. J. University of Chemical Tecnology and Metallurgy 2006, 41, 225.
  22. Feng, W.; Jie, X.; Xiaogiang, Li.; Lipeng, Zhou. Adv. Synth. Catal. 2005, 347, 1987. https://doi.org/10.1002/adsc.200505107
  23. Lagnathan, R.; Mahalakshmy, R.; Viswanathan, B. Bull. Catal. Soci. India 2008, 7, 50.
  24. Gawande, M. B.; Jayaram, R. V. Catal. Commun. 2006, 7, 933.
  25. Susana, T.-F.; Roberto, P.; Gloriya, D. A. Reaction Kinetics and Catalysis Letter 2007, 92, 361. https://doi.org/10.1007/s11144-007-5188-z
  26. Fakhroueian, Z.; Farzaneh, F.; Ghandi, M. J. Sci. Islamic Republic of Iran 2007, 18, 303.
  27. Jose, J.; Ameta, J.; Punjabi, P. B. Bull. Catal. Soci. India 2007, 6, 110.
  28. Gambhire, A. B.; Lande, M. K.; Arbad, B. R. Bull. Catal. Soci. India 2008, 7, 28.
  29. Reddy, B. M.; Patil, M. K.; Rao, K. N.; Reddy, G. K. J. Mol. Cata. A: Chem. 2006, 258, 302. https://doi.org/10.1016/j.molcata.2006.05.065
  30. Reddy, B. M. J. Mol. Cata. A: Chem. 2006, 244, 1. https://doi.org/10.1016/j.molcata.2005.08.054
  31. Alifanti, M.; Baps, B.; Blangenois, N.; Naud, J. Chem. Mater. 2003, 15, 395. https://doi.org/10.1021/cm021274j
  32. Kim, H. W.; Kong, M. H. Acta. Physi. Polo. A 2008, 113.
  33. Mishra, B. G.; Rao, G. R. Bull. Mater. Sci. 2002, 25, 155. https://doi.org/10.1007/BF02706236
  34. Hattori, H. Chem. Rev. 1995, 95, 537. https://doi.org/10.1021/cr00035a005
  35. Hattori, H. Appl. Catal. A: Gen. 2001, 222, 247. https://doi.org/10.1016/S0926-860X(01)00839-0
  36. Tsuji, H.; Hattori, H. Catal. Today 2006, 116, 239. https://doi.org/10.1016/j.cattod.2006.01.034
  37. Chunli, X.; Bartley J. K. Synthesis 2005, 1, 3468.
  38. Watkins, R. S.; Lee, A. F.; Wilson, K. Green Chem. 2004, 6, 335. https://doi.org/10.1039/b404883k

Cited by

  1. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis vol.2, pp.6, 2012, https://doi.org/10.1039/c2cy00490a
  2. Effect of Reaction Parameters on the Synthesis of 5-Arylidene Barbituric Acid Derivatives in Ball Mills vol.19, pp.3, 2015, https://doi.org/10.1021/op5003787
  3. Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-014-1905-1
  4. Succinimidinium hydrogensulfate ([H-Suc]HSO4) as an efficient ionic liquid catalyst for the synthesis of 5-arylidenepyrimidine-2,4,6(1H,3H,5H)-trione and pyrano-pyrimidinones derivatives vol.13, pp.3, 2016, https://doi.org/10.1007/s13738-015-0754-1
  5. Succinimidinium N-sulfonic acid hydrogen sulfate as an efficient ionic liquid catalyst for the synthesis of 5-arylmethylene-pyrimidine-2,4,6-trione and pyrano[2,3-d]pyrimidinone derivatives vol.42, pp.5, 2016, https://doi.org/10.1007/s11164-015-2289-6
  6. Mesolite: An Efficient Heterogeneous Catalyst for One-Pot Synthesis of 2-Amino-4H-chromenes pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2016.1159584
  7. ]pyrimidinedione derivatives in aqueous media pp.02682605, 2018, https://doi.org/10.1002/aoc.4605
  8. ] pyrimidine derivatives in aqueous media vol.32, pp.10, 2018, https://doi.org/10.1002/aoc.4455
  9. The introduction of two new imidazole-based bis-dicationic Brönsted acidic ionic liquids and comparison of their catalytic activity in the synthesis of barbituric acid derivatives vol.42, pp.12, 2018, https://doi.org/10.1039/C8NJ01179F
  10. ChemInform Abstract: Synthesis, Characterization and Catalytic Activity of Ce1MgxZr1-xO2 (CMZO) Solid Heterogeneous Catalyst for the Synthesis of 5-Arylidin vol.41, pp.30, 2010, https://doi.org/10.1002/chin.201030171
  11. Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2835
  12. Knoevenagel Reaction in Water Catalyzed by Mesoporous Silica Materials Synthesized from Industrial Waste Coal Fly Ash vol.55, pp.3, 2010, https://doi.org/10.5012/jkcs.2011.55.3.430
  13. Reaction of 6-aminouracils with aldehydes in water as both solvent and reactant under FeCl3·6H2O catalysis: towards 5-alkyl/arylidenebarbituric acids vol.4, pp.61, 2010, https://doi.org/10.1039/c4ra03413a
  14. Gated Decoupling 13C NMR Application to Determine Conformation and Unambiguous Chemical Shift of Arylidene Barbiturates vol.46, pp.6, 2010, https://doi.org/10.1007/s00723-015-0666-3
  15. DABCO-based ionic liquids: green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media vol.6, pp.50, 2010, https://doi.org/10.1039/c6ra05878g
  16. Taurine as a green bio-organic catalyst for the preparation of bio-active barbituric and thiobarbituric acid derivatives in water media vol.77, pp.None, 2010, https://doi.org/10.1016/j.bioorg.2017.12.021
  17. Introduction of piperazine-1,4-diium dihydrogen phosphate as a new and highly efficient dicationic brönsted acidic ionic salt for the synthesis of (thio)barbituric acid derivatives in water vol.1178, pp.None, 2019, https://doi.org/10.1016/j.molstruc.2018.10.053
  18. Verjuice as a green and bio-degradable solvent/catalyst for facile and eco-friendly synthesis of 5-arylmethylenepyrimidine-2,4,6-trione, pyrano[2,3-d]pyrimidinone and pyrimido[4,5-d]pyrimidinone deriv vol.16, pp.4, 2019, https://doi.org/10.1007/s13738-018-1565-y
  19. Microwave‐associate synthesis of Co3O4 nanoparticles as an effcient nanocatalyst for the synthesis of arylidene barbituric and Meldrum's acid derivatives in green media vol.33, pp.9, 2010, https://doi.org/10.1002/aoc.5100
  20. Reactivity of Barbituric, Thiobarbituric Acids and Their Related Analogues: Synthesis of Substituted and Heterocycles-based Pyrimidines vol.24, pp.None, 2010, https://doi.org/10.2174/1385272824999200608134859
  21. A study on the physical properties of low melting mixtures and their use as catalysts/solvent in the synthesis of barbiturates vol.58, pp.9, 2010, https://doi.org/10.1002/jhet.4315