DOI QR코드

DOI QR Code

A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

  • Published : 2010.02.20

Abstract

In this study, the atmospheric plasma treatment with $He/O_2$ was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix.

Keywords

References

  1. Schwartz, M. M. In Composite Materials Handbook; 2nd ed.; Mc- Graw- Hill: New York, 1992.
  2. Smith, W. S. In Engineered Materials Handbook; ASM International: Ohio, 1987.
  3. Donnet, J. B.; Bansal, R. C. In Carbon Fibers; 2nd ed.; Marcel Dekker: New York, 1990.
  4. Chu, J. M.; Lee, E. K.; Choi, S. Y. Elastomer 2008, 43, 113.
  5. Shin, J. W.; Jeun, J. P.; Kang, P. H. J. Ind. Eng. Chem. 2009, 15, 555. https://doi.org/10.1021/ie50162a002
  6. Jung. T. Y.; Lim. H. B. Bull. Korean Chem. Soc. 2006, 27, 373. https://doi.org/10.5012/bkcs.2006.27.3.373
  7. Jensen, C.; Zhang, C.; Qiu, Y. Compos. Interfaces. 2003, 10, 277. https://doi.org/10.1163/156855403765826919
  8. Kingsley, K. C. H.; Adam F. L.; Steven, L.; Alexander, B. Composites Part A 2008, 39, 364. https://doi.org/10.1016/j.compositesa.2007.10.008
  9. Hartney, M. A.; Hess, D.W.; Soane, D. S. J. Vac. Sci. Technol. B 1989, 7, 1. https://doi.org/10.1116/1.584440
  10. Park, S. J.; Lee, E. J.; Kwon, S. H. Bull. Korean Chem. Soc. 2007, 30, 6.
  11. Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2004, 275, 590. https://doi.org/10.1016/j.jcis.2004.03.011
  12. Montes-Moran, M. A.; Vanhattum, F. W. J.; Nunes, J. P.; Martinez- Alonso, A.; Tascon, J. M. D.; Bernardo, C. A. Carbon 2005, 43, 1795. https://doi.org/10.1016/j.carbon.2005.02.005
  13. Li, H.; Liang, H.; He, F.; Huang, Y.; Wan, Y. Surf. Coat. Technol. 2009, 203, 1317. https://doi.org/10.1016/j.surfcoat.2008.10.042
  14. Jensen, C.; Zhang, C.; Qiu, Y. Compos. Interfaces 2003, 10, 277. https://doi.org/10.1163/156855403765826919
  15. Lawton, R. A.; Price, C. R.; Runge, A. F.; Doherty, W. J.; Saavedra, S. S. Colloid. Surface. A 2005, 253, 213. https://doi.org/10.1016/j.colsurfa.2004.11.010
  16. Dellavolpe, C.; Fambri, L.; Fenner, R.; Migliaresi, C.; Pegoretti, A. J. Mater. Sci. 1994, 29, 3919. https://doi.org/10.1007/BF00355950
  17. Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93. https://doi.org/10.1006/jcis.2002.8309
  18. Hwang, Y. J.; McCord, M. G.; Kang, B. C. Fibers Polym. 2005, 6, 113. https://doi.org/10.1007/BF02875601
  19. Gardner, S. D. C.; Singamsetty, S. K.; Booth, G. L.; He, G. R.; Pittman, C. U. Carbon 1995, 33, 587. https://doi.org/10.1016/0008-6223(94)00144-O
  20. Park, S. J.; Hsu, J. P. In Interfacial Forces and Fields; Theory and Applications; Dekker: New York, 1999.
  21. Washburn, E. W. Phys. Rev. 1921, 17, 273. https://doi.org/10.1103/PhysRev.17.273
  22. Owens, D. K.; Wendt, R. C. J. Appl. Polym. Sci. 1969, 13, 1741. https://doi.org/10.1002/app.1969.070130815
  23. Kaelble, D. H. J. Adhes. 1970, 2, 66. https://doi.org/10.1080/0021846708544582
  24. Park, S. J.; Kim, B. J. Mater. Sci. Eng. A 2005, 408, 269. https://doi.org/10.1016/j.msea.2005.08.129
  25. Paiva, M. C.; Bernardo, C. A.; Nardin, M. Carbon 2000, 38, 1323. https://doi.org/10.1016/S0008-6223(99)00266-3

Cited by

  1. Roles of Nickel Layer Deposition on Surface and Electric Properties of Carbon Fibers vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1630
  2. Fabrication of carbon papers using polyacrylonitrile fibers as a binder vol.49, pp.10, 2014, https://doi.org/10.1007/s10853-014-8096-4
  3. Influence of microwave plasma treatment on the surface properties of carbon fibers and their adhesion in a polypropylene matrix vol.139, pp.1757-899X, 2016, https://doi.org/10.1088/1757-899X/139/1/012046
  4. Modifications of surface and bulk properties of magnetron-sputtered carbon films employing a post-treatment of atmospheric pressure plasma vol.58, pp.SA, 2019, https://doi.org/10.7567/1347-4065/aaec87
  5. Surface Treatment of Carbon Fibers by Oxy-Fluorination vol.12, pp.4, 2019, https://doi.org/10.3390/ma12040565
  6. Modification of carbon fiber by air plasma and its adhesion with BMI resin vol.4, pp.51, 2014, https://doi.org/10.1039/c4ra01835d
  7. Influence of oxygen plasma treatment parameters on the properties of carbon fiber vol.30, pp.21, 2010, https://doi.org/10.1080/01694243.2016.1182833
  8. Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics vol.37, pp.49, 2010, https://doi.org/10.1021/acs.langmuir.1c02121
  9. Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics vol.37, pp.49, 2010, https://doi.org/10.1021/acs.langmuir.1c02121