DOI QR코드

DOI QR Code

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Published : 2010.02.20

Abstract

In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

Keywords

References

  1. Dipti, S. S.; Chung; U. C.; Chung, W. S. Metals Mater. Int. 2007, 13, 257. https://doi.org/10.1007/BF03027814
  2. Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; Gottesfeld, S. J. Power Sources 2000, 86, 111. https://doi.org/10.1016/S0378-7753(99)00407-3
  3. Chen. C. Y.; Tang, P. J. Power Sources 2002, 123, 37. https://doi.org/10.1016/S0378-7753(03)00434-8
  4. Kim, S.; Park, S. J. J. Power Sources 2006, 159, 42. https://doi.org/10.1016/j.jpowsour.2006.04.041
  5. Song, H.; Qiu, X.; Li, F. Electrochim. Acta 2008, 53, 3708. https://doi.org/10.1016/j.electacta.2007.11.080
  6. Kim, S.; Park, S. J. Solid State Ionics 2008, 178, 1915.
  7. Lima, A.; Cutanceau, C.; Leger, J. M.; Lamy, C. J. Appl. Electrochem. 2001, 31, 379. https://doi.org/10.1023/A:1017578918569
  8. Katsuaki, S.; Kohei, U.; Hideaki, K.; Yoshinobu, N. J. Electroanal. Chem. 1998, 256, 481. https://doi.org/10.1016/0022-0728(88)87023-2
  9. Watanabe, M.; Saeguae, S.; Stonelhart, P. J. Electroanal. Chem. 1989, 284, 213.
  10. Kim, S.; Park, S. J. Electrochim. Acta 2008, 53, 4082. https://doi.org/10.1016/j.electacta.2007.08.067
  11. Hyun, M. S.; Kim, S. K.; Lee, B. R.; Peck, D. H.; Shul, Y. G.; Jung, D. H. Catal. Today 2008, 132, 138. https://doi.org/10.1016/j.cattod.2007.12.034
  12. Chu, D.; Gilman, S. J. Electrochem. Soc. 1996, 143, 1685. https://doi.org/10.1149/1.1836700
  13. Davies, J. C.; Bonde, J.; Logadottir, A.; Norskov, J. K.; Chorkendorff, I. Fuel Cells 2005, 5, 429. https://doi.org/10.1002/fuce.200400076
  14. Kim, S.; Yong, Y. J.; Park, S. J. Colloid Surface A 2008, 313, 220. https://doi.org/10.1016/j.colsurfa.2007.04.098
  15. Kim, S.; Park, S. J. J. Solid State Electrochem. 2007, 11, 821. https://doi.org/10.1007/s10008-006-0228-6
  16. Han, K. I.; Lee, J. S.; Lee, S. O.; Park, Y. W.; Kim, H. S. Electrochim. Acta 2004, 50, 791. https://doi.org/10.1016/j.electacta.2004.01.115
  17. Chan, C. M.; Ko, T. M.; Hiraoka, H. Surf. Sci. Rep. 1996, 24, 1. https://doi.org/10.1016/0167-5729(96)80003-3
  18. Lin, J. H.; Chen, H. W.; Wang, K. T.; Liaw, F. H. J. Mater. Chem. 1998, 8, 2169. https://doi.org/10.1039/a803359e
  19. Park, S. J.; Kim, J. S. J. Colloid Interface Sci. 2001, 244, 336. https://doi.org/10.1006/jcis.2001.7920
  20. Park, S. J.; Cho, K. S.; Ryu, S. K. Carbon 2003, 41, 1437. https://doi.org/10.1016/S0008-6223(03)00088-5
  21. Boening, H. V. Plasma Science and Technology; Cornell Press: NewYork, U. S. A., 1982.
  22. Li, X.; Horita, K. Carbon 2000, 38, 133. https://doi.org/10.1016/S0008-6223(99)00108-6
  23. Takada, T.; Nakahara, M.; Kumagai, H.; Sanada, Y. Carbon 1996, 34, 1087. https://doi.org/10.1016/0008-6223(96)00054-1
  24. Wang, X-B.; Yin, G-P.; Shi, P-F. Carbon 2006, 44, 133. https://doi.org/10.1016/j.carbon.2005.06.043
  25. Yumitory, S. J. Mater. Sci. 2000, 35, 139. https://doi.org/10.1023/A:1004761103919
  26. Li, W.; Zhou, W.; Li, H.; Zhou, Z.; Zhou, B.; Sun, G.; Xin, Q. Electrochim. Acta 2004, 40, 1045.

Cited by

  1. Insights into the Effects of Functional Groups on Carbon Nanotubes for the Electrooxidation of Methanol vol.27, pp.15, 2011, https://doi.org/10.1021/la2011452
  2. Effect of activated graphite nanofibers on electrochemical activities of Pt–Ru nanoparticles for fuel cells vol.37, pp.9, 2011, https://doi.org/10.1007/s11164-011-0387-7
  3. Comparative study of plasma-treated non-precious catalysts for oxygen and hydrogen peroxide reduction reactions vol.4, pp.9, 2011, https://doi.org/10.1039/c1ee01163d
  4. Intensification of a hydrogenation catalyst activity by nanosecond pulsed discharge treatment vol.15, pp.8, 2018, https://doi.org/10.1002/ppap.201800065
  5. Decomposition of poly(amidoamine) (PAMAM) dendrimers under O2 plasma conditions vol.97, pp.3, 2010, https://doi.org/10.1016/j.polymdegradstab.2011.11.008