DOI QR코드

DOI QR Code

Evaluation of Ensemble Approach for O3 and PM2.5 Simulation

  • Received : 2010.05.21
  • Accepted : 2010.09.14
  • Published : 2010.12.31

Abstract

Inter-comparison of chemical transport models (CTMs) was conducted among four modeling research groups. Model performance of the ensemble approach to $O_3$ and $PM_{2.5}$ simulation was evaluated by using observational data with a time resolution of 1 or 6 hours at four sites in the Kanto area, Japan, in summer 2007. All groups applied the Community Multiscale Air Quality model. The ensemble average of the four CTMs reproduced well the temporal variation of $O_3$ (r=0.65-0.85) and the daily maximum $O_3$ concentration within a factor of 1.3. By contrast, it underestimated $PM_{2.5}$ concentrations by a factor of 1.4-2, and did not reproduce the $PM_{2.5}$ temporal variation at two suburban sites (r=~0.2). The ensemble average improved the simulation of ${SO_4}^{2-}$, ${NO_3}^-$, and ${NH_4}^+$, whose production pathways are well known. In particular, the ensemble approach effectively simulated ${NO_3}^-$, despite the large variability among CTMs (up to a factor of 10). However, the ensemble average did not improve the simulation of organic aerosols (OAs), underestimating their concentrations by a factor of 5. The contribution of OAs to $PM_{2.5}$ (36-39%) was large, so improvement of the OA simulation model is essential to improve the $PM_{2.5}$ simulation.

Keywords

References

  1. Carmichael, G.R., Sakurai, T., Streets, D., Hozumi, Y.,Ueda, H., Park, S.U., Fung, C., Han, Z., Kajino, M., Engardt,M., Bennet, C., Hayami, H., Sartelet, K., Holloway,T., Wang, Z., Kannari, A., Fu, J., Matsuda, K.,Thongbooncho, N., Amann, M. (2008) MICS-Asia II:The model intercomparison study for Asia Phase IImethodology and overview of findings. AtmosphericEnvironment 42, 3468-3490. https://doi.org/10.1016/j.atmosenv.2007.04.007
  2. Chang, Y.S., Carmichael, G.R., Kurita, H., Ueda, H.(1989) The transport and formation of photochemicaloxidants in central Japan. Atmospheric Environment23, 363-393. https://doi.org/10.1016/0004-6981(89)90584-2
  3. Delle Monache, L., Stull, R.B. (2003) An ensemble air-qualityforecast over western Europe during an ozoneepisode. Atmospheric Environment 37, 3469-3474. https://doi.org/10.1016/S1352-2310(03)00475-8
  4. Dudhia, J. (1993) A nonhydrostatic version of the PennState/NCAR mesoscale model: Validation tests andsimulation of an Atlantic cyclone and cold front. MonthlyWeather Review 121, 1493-1513. https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
  5. Eder, B., Yu, S. (2006) A performance evaluation of the2004 release of Models-3 CMAQ. Atmospheric Environment40, 4811-4824. https://doi.org/10.1016/j.atmosenv.2005.08.045
  6. Fiore, A.M., Dentener, F.J., Wild, O., Cuvelier, C., Schultz,M.G., Hess, P., Textor, C., Schulz, M., Doherty,R.M., Horowitz, L.W., MacKenzie, I.A., Sanderson,M.G., Shindell, D.T., Stevenson, D.S., Szopa, S., VanDingenen, R., Zeng, G., Atherton, C., Bergmann, D.,Bey, I., Carmichael, G., Collins, W.J., Duncan, B.N.,Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine,D., Holloway, T., Isaksen, I.S.A., Jacob, D.J.,Jonson, J.E., Kaminski, J.W., Keating, T.J., Lupu, A.,Marmer, E., Montanaro, V., Park, R.J., Pitari, G., Pringle,K.J., Pyle, J.A., Schroeder, S., Vivanco, M.G.,Wind, P., Wojcik, G., Wu, S., Zuber, A. (2009) Multi-modelestimates of intercontinental source-receptor relationships for ozone pollution. Journal of GeophysicalResearch 114, D04301, doi:10.1029/2008JD010816.
  7. Hasegawa, S., Kobayashi, S., Ohara, T., Tanabe, K., Hayami,H., Yomemochi, S., Umezawa, N., Iijima, A., Kumagai,K. (2008) Fine Aerosol Measurement and Modelingin Kanto Area (1), Overview of Measurement.Proceedings of the 49th Annual Meeting of the JapanSociety for Atmospheric Environment, 377 (in Japanese).
  8. Hass, H., Builtjes, P.J.H., Simpson, D., Stern, R. (1997)Comparison of model results obtained with severalEuropean regional air quality models. Atmospheric Environment31, 3259-3279. https://doi.org/10.1016/S1352-2310(97)00066-6
  9. Kondo, Y., Takegawa, N., Miyakawa, T., Koike, M., Miyazaki,Y., Kanaya, Y., Mochida, M., Kuwata, M., Morino,Y., Shiraiwa, M. (2010) Formation and transportof aerosols in Tokyo in relation to their physical andchemical properties: a review. Journal of the MeteorologicalSociety of Japan 88, 597-624. https://doi.org/10.2151/jmsj.2010-401
  10. Minoura, H., Takahashi, K., Chow, J.C., Watson, J.G.(2006) Multi-year trend in fine and coarse particlemass, carbon, and ions in downtown Tokyo, Japan. AtmosphericEnvironment 40, 2478-2487. https://doi.org/10.1016/j.atmosenv.2005.12.029
  11. Morino, Y., Chatani, S., Hayami, H., Sasaki, K., Mori,Y., Morikawa, T., Ohara, T., Hasegawa, S., Kobayashi,S. (2010) Intercomparison of Chemical Transport Modelfor Evaluation of Model Performance on $O_3\;and\;PM_{2.5}$Prediction-Case Study on Kanto Area in Summer 2007.Journal of Japan Society for Atmospheric Environment45, 212-226 (in Japanese with English abstract).
  12. Ohara, T., Yamaji, K., Uno, I., Tanimoto, H., Sugata, S.,Nagashima, T., Kurokawa, J., Horii, N., Akimoto, H.(2008) Longterm simulations of surface ozone in EastAsia during 1980-2020 with CMAQ and REAS. InNATO Science for peace and security series-C: EnvironmentalSecurity, Air Pollution Modeling and itsApplication XIX (Borrego, C. and Miranda, A.I., Eds),Springer, Netherlands, pp. 136-144.
  13. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker,D.M., Wang, W., Powers, J.G. (2005) A descripdescriptionof the Advanced Research WRF Version 2. NCARTechnical note, NCAR/TN-468+STR, Boulder, 99p.
  14. Turpin, B.J., Lim, H.J. (2001) Species contributions to$PM_{2.5}$ mass concentrations: Revisiting common assumptionsfor estimating organic mass. Aerosol Scienceand Technology 35, 602-610. https://doi.org/10.1080/02786820119445
  15. US Environmental Protection Agency (2007) Guidanceon the Use of Models and Other Analyses for DemonstratingAttainment of Air Quality Goals for Ozone,$PM_{2.5}$, and Regional Haze, Rep. USA EPA-454/B-07-002, US Environmental Protection Agency, Washington, DC.
  16. van Loon, M., Vautard, R., Schaap, M., Bergstrom, R.,Bessagnet, B., Brandt, J., Builtjes, P.J.H., Christensen,J.H., Cuvelier, C., Graff, A., Jonson, J.E., Krol, M.,Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrason,L., Thunis, P., Vignati, E., White, L., Wind, P. (2007)Evaluation of long-term ozone simulations from sevenregional air quality models and their ensemble. AtmosphericEnvironment 41, 2083-2097. https://doi.org/10.1016/j.atmosenv.2006.10.073
  17. Vautard, R., Builtjes, P.H.J., Thunis, P., Cuvelier, C., Bedogni,M., Bessagnet, B., Honore, C., Moussiopoulos,N., Pirovano, G., Schaap, M., Stern, R., Tarrason, L.,Wind, P. (2007) Evaluation and intercomparison ofozone and PM10 simulations by several chemistrytransport models over 4 European cities within the City-Delta project. Atmospheric Environment 41, 173-188. https://doi.org/10.1016/j.atmosenv.2006.07.039
  18. Volkamer, R., Jimenez, J.L., San Martini, F., Dzepina, K.,Zhang, Q., Salcedo, D., Molina, L.T., Worsnop, D.R.,Molina, M.J. (2006) Secondary organic aerosol formationfrom anthropogenic air pollution: Rapid and higherthan expected. Geophysical Research Letter 33,L17811, doi:10.1029/2006GL026899.
  19. Wakamatsu, S., Uno, I., Ohara, T., Schere, K.L. (1999) Astudy of the relationship between photochemical ozoneand its precursor emissions of nitrogen oxides and hydrocarbonsin Tokyo and surrounding areas, AtmosphericEnvironment 19, 3097-3108.

Cited by

  1. C) Diurnal Variations in Fine Particles at Sites Downwind from Tokyo, Japan in Summer vol.45, pp.16, 2011, https://doi.org/10.1021/es201400p
  2. Overview of Model Inter-Comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM) vol.9, pp.1, 2018, https://doi.org/10.3390/atmos9010019
  3. Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan vol.12, pp.2, 2018, https://doi.org/10.5572/ajae.2018.12.2.139
  4. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.7, pp.1, 2010, https://doi.org/10.5194/gmdd-7-131-2014
  5. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.7, pp.1, 2010, https://doi.org/10.5194/gmdd-7-131-2014
  6. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.8, pp.2, 2010, https://doi.org/10.5194/gmd-8-235-2015
  7. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.8, pp.2, 2010, https://doi.org/10.5194/gmd-8-235-2015
  8. A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-90446-6