DOI QR코드

DOI QR Code

Threshold Voltage Control through Layer Doping of Double Gate MOSFETs

  • 투고 : 2010.05.24
  • 심사 : 2010.09.24
  • 발행 : 2010.09.30

초록

Double Gate MOSFETs (DG MOSFETs) with doping in one or two thin layers of an otherwise intrinsic channel are simulated to obtain the transport characteristics, threshold voltage and leakage current. Two different device structures- one with doping on two layers near the top and bottom oxide layers and another with doping on a single layer at the centre- are simulated and the variation of device parameters with a change in doping concentration and doping layer thickness is studied. It is observed that an n-doped layer in the channel reduces the threshold voltage and increases the drive current, when compared with a device of undoped channel. The reduction in the threshold voltage and increase in the drain current are found to increase with the thickness and the level of doping of the layer. The leakage current is larger than that of an undoped channel, but less than that of a uniformly doped channel. For a channel with p-doped layer, the threshold voltage increases with the level of doping and the thickness of the layer, accompanied with a reduction in drain current. The devices with doped middle layers and doped gate layers show almost identical behavior, apart from the slight difference in the drive current. The doping level and the thickness of the layers can be used as a tool to adjust the threshold voltage of the device indicating the possibility of easy fabrication of ICs having FETs of different threshold voltages, and the rest of the channel, being intrinsic having high mobility, serves to maintain high drive current in comparison with a fully doped channel.

키워드

참고문헌

  1. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y.Arimoto, “Scaling theory for Double-Gate SOIMOSFETs,” IEEE Trans. Electron Devices, Vol.40,No.12, pp.2326-2329, 1993. https://doi.org/10.1109/16.249482
  2. R. W. Keyes, “The effect of randomness in thedistribution of impurity atoms on FET thresholds,”Appl. Phys. A, Vol.8, No.3, pp.251-259, 1975. https://doi.org/10.1007/BF00896619
  3. R. W. Keyes, “Effect of randomness in thedistribution of impurity ions on FET thresholds inintegrated electronics,” IEEE J. Solid-StateCircuits, Vol.10, No.4, pp.245-247, 1975. https://doi.org/10.1109/JSSC.1975.1050600
  4. A. Asenov, “Random dopant induced thresholdvoltage lowering and fluctuations in Sub-0.1${\mu}m$MOSFETs: A 3-D atomistic simulation study,”IEEE Trans. Electron Devices, Vol.45, pp.2505-2513, 1998. https://doi.org/10.1109/16.735728
  5. A. Asenov, “Random dopant induced thresholdvoltage lowering and fluctuations in sub 50 nmMOSFETs: a statistical 3D ‘atomistic’ simulationstudy,” Nanotechnology, Vol.10, pp.153-158, 1999. https://doi.org/10.1088/0957-4484/10/2/309
  6. A. Asenov and S. Saini, “Polysilicon gateenhancement of the random dopant inducedthreshold voltage fluctuations in sub-100 nmMOSFETs with ultrathin gate oxide,” IEEE Trans.Electron Devices, Vol.47, pp.805-812, 2000. https://doi.org/10.1109/16.830997
  7. A. R. Brown, A. Asenov, and J. R. Watling,“Intrinsic fluctuations in sub 10-nm Double-GateMOSFETs introduced by discreteness of chargeand matter,” IEEE Trans. Nanotechnology, Vol.1,No.4, pp.195-200, 2002. https://doi.org/10.1109/TNANO.2002.807392
  8. A. Asenov, S. Kaya, and A. R. Brown, “Intrinsicparameter fluctuations in decananometerMOSFETs introduced by gate line edgeroughness,” IEEE Trans. Electron Devices, Vol.50,No.5, pp.1254-1260, 2003. https://doi.org/10.1109/TED.2003.813457
  9. A. Asenov, A. R. Brown, J. H. Davies, S. Kaya,and G. Slavcheva, “Simulation of intrinsicparameter fluctuations in decananometer andnanometer-scale MOSFETs,” IEEE Trans.Electron Devices, Vol.50, No.9, pp.1837-1852,2003. https://doi.org/10.1109/TED.2003.815862
  10. G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy,and A. Asenov, “Simulation study of individualand combined sources of intrinsic parameterfluctuations in conventional nano-MOSFETs,”IEEE Trans. Electron Devices, Vol.53, No.12,pp.3063-3070, 2006. https://doi.org/10.1109/TED.2006.885683
  11. M. Ieong, H.-S. P. Wong, E. Nowak, J. Kedzierski,and E. C. Jones, “High performance double-gatedevice technology challenges and opportunities,” inProcedings of International Symposium on QualityElectronic Design, 2002, pp.492-495.
  12. F. Liu, L. Zhang, J. Zhang, J. He, and M. Chan,“Effects of body doping on threshold voltage andchannel potential of symmetric DG MOSFETs withcontinuous solution from accumulation to stronginversionregions,” Semicond. Sci. Technol., Vol.24,No.8, p. 085005(8pp), 2009.
  13. R. Lin, Q. Lu, P. Ranade, T.-J. King, and C. Hu,“An djustable work function technology using Mogate for CMOS devices,” IEEE Electron. DeviceLett., Vol.23, No.1, pp.49-51, 2002. https://doi.org/10.1109/55.974809
  14. C. Y. Lin, M. W. Ma, A. Chin, Y. C. Yeo, C. Zhu,M. F. Li, and D.-L. Kwong, “Fully silicided NiSigate on $La_2O_3$ MOSFETs,” IEEE Electron. DeviceLett., Vol.24, No.5, pp.348-350, 2003. https://doi.org/10.1109/LED.2003.812569
  15. J. Liu, H. C. Wen, J. P. Lu, and D.-L. Kwong,“Dual-work-function metal gates by fullsilicidation of poly-Si with Co-Ni bi-Layers,” IEEEElectron. Device Lett., Vol.26, No.4, pp.228-230,2005. https://doi.org/10.1109/LED.2005.844696
  16. D. S. Yu, C. H. Wu, C. H. Huang, A. Chin, W. J.Chen, C. Zhu, M. F. Li, and D.-L. Kwong, “FullySilicided NiSi and Germanided NiGe dual gates on$SiO_2$ n- and p-MOSFETs,” IEEE Electron. DeviceLett., Vol.24, No.11, pp.739-741, 2003. https://doi.org/10.1109/LED.2003.819274
  17. H. Zhong, S.-N. Hong, Y.-S. Suh, H. Lazar, G.Heuss, and V. Misra, “Properties of Ru-Ta alloysas gate electrodes for NMOS and PMOS silicondevices,” IEDM Tech. Dig., pp.467-470, 2001.
  18. T.-L. Li, C.-H. Hu, W.-L. Ho, H. C. H. Wang, andC.-Y. Chang, “Continuous and precise workfunction adjustment for integratable dual metal gateCMOS technology using Hf-Mo binary alloys,”IEEE Trans. Electron Devices, Vol.52, No.6,pp.1172-1179, 2005. https://doi.org/10.1109/TED.2005.848108
  19. V. Misra, H. Zhong, and H. Lazar, “Electricalproperties of Ru-based alloy gate electrodes fordual metal gate Si-CMOS,” IEEE Electron. DeviceLett., Vol.23, No.6, p.354356, 2002. https://doi.org/10.1109/LED.2002.1004233
  20. X. P. Wang, M.-F. Li, C. Ren, X. F. Yu, C. Shen,H. H. Ma, A. Chin, C. X. Zhu, J. Ning, M. B. Yu,and D.-L. Kwong, “Tuning effective metal gatework function by a novel gate dielectric HfLaO fornMOSFETs,” IEEE Electron. Device Lett., Vol.27,No.1, pp.31-33, 2006. https://doi.org/10.1109/LED.2005.859950
  21. C.-H. Lu, G. M. T. Wong, M. D. Deal, W. Tsai, P.Majhi, C. O. Chui, M. R. Visokay, J. J. Chambers,L. Colombo, B. M. Clemens, and Y. Nishi,“Characteristics and mechanism of tunable workfunction gate electrodes using a bilayer metalstructure on $SiO_2\;and\;HfO_2$,” IEEE Electron.Device Lett., Vol.26, No.7, pp.445-447, 2005. https://doi.org/10.1109/LED.2005.851232
  22. J. K. Schaeffer, C. Capasso, L. R. C. Fonseca, S.Samavedam, D. C. Gilmer, and Y. Liang,“Challenges for the integration of metal gateelectrodes,” IEDM Tech. Dig., pp.287-290, 2004.
  23. H. Lu, W. Y. Lu, and Y. Taur, “Effect of bodydoping on double-gate MOSFET characteristics,”Semicond. Sci. Technol., Vol.23, No.1, 2008.
  24. J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M.Doczy, B. Jin, D. Lionberger, M. Metz, W.Rachmady, M. Radosavljevic, U. Shah, N. Zelick,and R. Chau, “Tri-Gate transistor architecture withHigh ${\kappa}$ gate dielectrics, Metal gates and Strainengineering,” in Symp. on VLSI Technology, 2006,pp.50-51.
  25. Y. Taur, C. H. Wann, and D. J. Frank, “25 nmCMOS design considerations,” IEDM Tech. Dig.,pp.789-792, 1998.
  26. D. J. Frank, R. H. Dennard, E. Nowak, P. M.Solomon, Y. Taur, and H.- S. P. Wong, “Devicescaling limits of Si MOSFETs and their applicationdependencies,” Proceedings of the IEEE, Vol.89,pp.259-288, 2001. https://doi.org/10.1109/5.915374
  27. H. Tanno, M. Sakuraba, B. Tillack, and J. Murota,“Heavy B atomiclayer doping characteristics in Siepitaxial growth on B adsorbed Si(100) byultraclean low-pressure CVD system,”Solid-StateElectron., Vol.53, No.8, pp.877-879, 2009. https://doi.org/10.1016/j.sse.2009.04.015
  28. J. Murota, M. Sakuraba, and B. Tillack,“Atomically controlled processing for Group IVsemiconductors by chemical vapor deposition,” Jpn.J. Appl. Phys., Vol.45, No.9, pp.6767-6785, 2006. https://doi.org/10.1143/JJAP.45.6767
  29. B. Tillack, Y. Yamamoto, D. Bolze, B. Heinemann,H. Rucker, D. Knoll, J. Murota, and W. Mehr,“Atomic layer processing for doping of SiGe,”Thin Solid Films, Vol.508, No.1, pp.279-283, 2006. https://doi.org/10.1016/j.tsf.2005.08.408
  30. S. Svizhenko, M. P. Anantram, T. R. Govindan, B.Biegel, and R. Venugopal, “Two-dimensionalquantum mechanical modeling of nanotransistors,”J. Appl. Phys., Vol.91, pp.2343-2354, 2002. https://doi.org/10.1063/1.1432117
  31. G. Curatola, G. Fiori, and G. Iannaccone,“Modelling and simulation challenges fornanoscale MOSFETs in the ballistic limit,” Solid-State Electron., Vol.48, No.4, pp.581-587, 2006. https://doi.org/10.1016/j.sse.2003.09.029
  32. D. Munteanu and J. L. Autran, “Two-dimensionalmodeling of quantum ballistic transport in ultimatedouble-gate SOI devices,” Solid-State Electron.,Vol.47, No.7, pp.1219-1225, 2003. https://doi.org/10.1016/S0038-1101(03)00039-X
  33. S. Datta, “Nanoscale device modeling: the Greensfunction method,” Superlattices Microstruct.,Vol.28, No.4, pp.253-278, 2000. https://doi.org/10.1006/spmi.2000.0920
  34. A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom,“Theory of ballistic nanotransistors,” IEEE Trans.Electron devices, Vol.50, No.9, pp.1853-1864,2003. https://doi.org/10.1109/TED.2003.815366
  35. R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom,and D. Jovanovic, “Simulating quantum transportin nanoscale transistors: Real versus mode-spaceapproaches,” J. Appl. Phys., Vol.92, No.7,pp.3730-3739, 2002. https://doi.org/10.1063/1.1503165
  36. K. Natori, “Ballistic Metal-Oxide-SemiconductorField Effect Transistor,” J. Appl. Phys., Vol.76,No.8, pp.4879-4890, 1994. https://doi.org/10.1063/1.357263
  37. Y. Taur, “Analytic solutions of charge andcapacitance in symmetric and asymmetric doublegateMOSFETs,” IEEE Trans. Electron Devices,Vol.48, No.12, pp.2861-2869, 2001. https://doi.org/10.1109/16.974719
  38. W. Y. Choi, H. Kim, B. Lee, J. D. Lee, and B. G.Park, “Stable threshold voltage extraction usingTikhonov’s regularization theory,” IEEE Trans.Electron Devices, Vol.51, No.11, pp.1833-1839,2004. https://doi.org/10.1109/TED.2004.837010
  39. X. Zhou, K. Y. Lim, and D. Lim, “A simple andunambiguous definition of threshold voltage and itsimplications in deep-submicron MOS devicemodeling,” IEEE Trans. Electron Devices, Vol.46,No.4, pp.807-809, 1999. https://doi.org/10.1109/16.753720