DOI QR코드

DOI QR Code

ZAS3 represses NFκB-dependent transcription by direct competition for DNA binding

  • Hong, Joung-Woo (The Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Wu, Lai-Chu (Department Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University)
  • Received : 2010.11.02
  • Accepted : 2010.11.06
  • Published : 2010.12.31

Abstract

$NF{\kappa}B$ and ZAS3 are transcription factors that control important cellular processes including immunity, cell survival and apoptosis. Although both proteins bind the ${\kappa}B$-motif, they produce opposite physiological consequences; $NF{\kappa}B$ activates transcription, promotes cell growth and is often found to be constitutively expressed in cancer cells, while ZAS3 generally represses transcription, inhibits cell proliferation and is downregulated in some cancers. Here, we show that ZAS3 inhibits $NF{\kappa}B$-dependent transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Transient transfection studies show that N-terminal 645 amino acids is sufficient to repress transcription activated by $NF{\kappa}B$, and that the identical region also possesses intrinsic repression activity to inhibit basal transcription from a promoter. Finally, in vitro DNA-protein interaction analysis shows that ZAS3 is able to displace $NF{\kappa}B$ by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. It is conceivable that ZAS3 has therapeutic potential for controlling aberrant activation of $NF{\kappa}B$ in various diseases.

Keywords

References

  1. Pierce, J. W., Lenardo, M. and Baltimore, D. (1988) Oligonucleotide that binds nuclear factor $NF-{\kappa}B$ acts as a lymphoid-specific and inducible enhancer element. Proc. Natl. Acad. Sci. U.S.A. 85, 1482-1486. https://doi.org/10.1073/pnas.85.5.1482
  2. Oeckinghaus, A. and Ghosh, S. (2009) The NF-kB Family of Transcription Factors and its regulation. Cold Spring Harb. Perspect. Biol. 1, a000034. https://doi.org/10.1101/cshperspect.a000034
  3. Chen, G. and Goeddel, D. V. (2002) TNF-R1 signaling: a beautiful pathway. Science 296, 1634-1635. https://doi.org/10.1126/science.1071924
  4. Gilmore, T., Gapuzan, M. E., Kalaitzidis, D. and Starczynowski, D. (2002) $Rel/NF-{\kappa}B/I\;{\kappa}B$ signal transduction in the generation and treatment of human cancer. Cancer Lett. 181, 1-9. https://doi.org/10.1016/S0304-3835(01)00795-9
  5. Allen, C. E., Mak, C. H. and Wu, L. C. (2002) The ${\kappa}B$ transcriptional enhancer motif and signal sequences of V(D)J recombination are targets for the zinc finger protein HIVEP3/KRC: a site selection amplification binding study. BMC Immunol. 3, 10. https://doi.org/10.1186/1471-2172-3-10
  6. Wu, L. C. (2002) ZAS: $C_2H_2$ zinc finger proteins involved in growth and development. Gene Expr. 10, 137-152.
  7. Fujii, H., Gabrielson, E., Takagaki, T., Ohtsuji, M., Ohtsuji, N. and Hino, O. (2005) Frequent down-regulation of HIVEP2 in human breast cancer. Breast Cancer Res. Treat. 91, 103-112. https://doi.org/10.1007/s10549-004-5779-6
  8. Aalto, Y., El-Rifa, W., Vilpo, L., Ollila, J., Nagy, B., Vihinen, M., Vilpo, J. and Knuutila, S. (2001) Distinct gene expression profiling in chronic lymphocytic leukemia with 11q23 deletion. Leukemia 15, 1721-1728. https://doi.org/10.1038/sj.leu.2402282
  9. Allen, C. E., Muthusamy, N., Weisbrode, S. E., Hong, J. W. and Wu, L. C. (2002) Developmental anomalies and neoplasia in animals and cells deficient in the large zinc finger protein KRC. Genes Chromosomes Cancer 35, 287-298. https://doi.org/10.1002/gcc.10128
  10. Oukka, M., Kim, S. T., Lugo, G., Sun, J., Wu, L. C. and Glimcher, L. H. (2002) A mammalian homolog of Drosophila schnurri, KRC, regulates TNF receptor-driven responses and interacts with TRAF2. Mol. Cell 9, 121-131. https://doi.org/10.1016/S1097-2765(01)00434-8
  11. Hong, J. W., Allen, C. E. and Wu, L. C. (2003) Inhibition of $NF-{\kappa}B$ by ZAS3, a zinc-finger protein that also binds to the ${\kappa}B$ motif. Proc. Natl. Acad. Sci. U.S.A. 100, 12301-12306. https://doi.org/10.1073/pnas.2133048100
  12. Levine, M. and Manley, J. L. (1989) Transcriptional repression of eukaryotic promoters. Cell 59, 405-408. https://doi.org/10.1016/0092-8674(89)90024-X
  13. Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. P. and Eisenman, R. N. (1996) Mad proteins contain a dominant transcription repression domain. Mol. Cell Biol. 16, 5772-5781. https://doi.org/10.1128/MCB.16.10.5772
  14. Fleischer, T. C., Yun, U. J. and Ayer, D. E. (2003) Identification and characterization of three new components of the mSin3A corepressor complex. Mol. Cell Biol. 23, 3456-3467. https://doi.org/10.1128/MCB.23.10.3456-3467.2003
  15. Kakidani, H. and Ptashne, M. (1988) GAL4 activates gene expression in mammalian cells. Cell 52, 161-167. https://doi.org/10.1016/0092-8674(88)90504-1
  16. Ptashne, M. (1986) A genetic switch. Cell Press and Blackwell Scientific Publications, Cambridge, Massachusetts.
  17. Ghosh, S. and Karin, M. (2002) Missing pieces in the $NF-{\kappa}B$ puzzle. Cell 109(Suppl), S81-96. https://doi.org/10.1016/S0092-8674(02)00703-1
  18. Han, K. and Manley, J. L. (1993) Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7, 491-503. https://doi.org/10.1101/gad.7.3.491
  19. Han, K. and Manley, J. L. (1993) Functional domains of the Drosophila Engrailed protein. EMBO J. 12, 2723-2733.
  20. Sigler, P. B. (1988) Transcriptional activation. Acid blobs and negative noodles. Nature 333, 210-212. https://doi.org/10.1038/333210a0
  21. Ptashne, M. (1988) How eukaryotic transcriptional activators work. Nature 335, 683-689. https://doi.org/10.1038/335683a0
  22. Nissen, R. M. and Yamamoto, K. R. (2000) The glucocorticoid receptor inhibits $NF{\kappa}B$ by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 14, 2314-2329. https://doi.org/10.1101/gad.827900
  23. Gerritsen, M. E., Williams, A. J., Neish, A. S., Moore, S., Shi, Y. and Collins, T. (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. U.S.A. 94, 2927-2932. https://doi.org/10.1073/pnas.94.7.2927
  24. Papin, S., Cazeneuve, C., Duquesnoy, P., Jeru, I., Sahali, D. and Amselem, S. (2003) The tumor necrosis factor $\alpha$-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between $C/EBP{\beta}$ and $NF{\kappa}B$ p65. J. Biol. Chem. 278, 48839-48847. https://doi.org/10.1074/jbc.M305166200

Cited by

  1. Mesodermal repression of single-minded in Drosophila embryo is mediated by a cluster of Snail-binding sites proximal to the early promoter vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.105
  2. ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2 vol.44, pp.4, 2011, https://doi.org/10.5483/BMBRep.2011.44.4.267