DOI QR코드

DOI QR Code

Effect of Nitrification Inhibition on Soil Phosphate Release and Nutrient Absorption and Growth of Rice Plant

질산화작용 억제 처리가 논토양의 인산 가용화와 벼의 양분흡수 및 생육에 미치는 영향

  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University) ;
  • Kim, Byoung-Ho (Division of Life and Environmental Science, Daegu University)
  • 정종배 (대구대학교 생명환경학부) ;
  • 김병호 (대구대학교 생명환경학부)
  • Received : 2010.11.23
  • Accepted : 2010.12.16
  • Published : 2010.12.30

Abstract

In a pot experiment, we studied the effect of nitrification inhibition on Fe reduction and P release in paddy soil and growth and nutrient uptake of rice plant. Recommended level of fertilizers, 6 kg N, 5 kg $P_2O_5$ and 4 kg $K_2O$ per 10a, were applied, and for N fertilizer urea, urea+N-serve, and $KNO_3$ were included. Four 30-day-old seedlings were transplanted in a waterlogged 9 L pot filled with Yuga series soil, and 3 pots were prepared in each N fertilizer treatment. Changes of soil redox potential and concentration of ${NH_4}^-$, ${NO_3}^-$, $Fe^{2+}$ and ${PO_4}^{3-}$ in soil solution at 10 cm depth were monitored, and also the growth and nutrient uptake of rice plants were measured. Concentration of ${NH_4}^+$ in soil solution was highest in urea+N-serve treatment, and followed by urea and $KNO_3$ treatments. Addition of N-serve could effectively inhibit nitrification in the soil. In the treatment of $KNO_3$, relatively higher ${NO_3}^-$ concentration was found at 10 cm depth soil. In urea+N-serve treatment redox potential was lower than -100 mV during the experiment, but in the treatment of $KNO_3$ the potential was maintained above 0 mV until ${NO_3}^-$ remaining in soil solution. Reduction of Fe(III) and solubilization of P were highly correlated with redox potential changes in the three N fertilizer treatments. Concentrations of Fe(II) and ${PO_4}^{3-}$ in soil solution at 10 cm depth were much higher in the urea+N-serve treatment. The most vigorous rice seedling growth was found in the urea treatment. Although the availability of N and P in soil was enhanced in the urea+N-serve treatment through the suppression of nitrification, excessive solubilization of Fe could limit the growth of rice plants.

환원상태가 발달된 담수상태의 토양이나 습지생태계에서 ${NO_3}^-$는 환원상태의 진전을 지연시키는 완충역할을 할 수 있다. 논토양에서 ${NO_3}^-$가 Fe(III) 환원과 그에 따른 P의 가용화에 미치는 영향과 함께 질산화작용억제가 벼의 N, P 흡수 및 생육에 미치는 영향을 조사하였다. 담수 후 10 cm 깊이 토양의 산화환원전위 변화는 N 비료처리별로 현저하게 달리 나타났으며, 질산화작용이 억제된 요소+N-serve 처리에서는 -100 mV 이하로 낮아졌으나 $KNO_3$처리의 경우에는 0 mV 이상으로 유지되었다. 이러한 현상은 질소비료 처리별로 ${NO_3}^-$에 의한 redox buffer 작용 유무에 따라서 결정되는 것이다. N-serve 처리를 통하여 질산화작용을 억제시키면 ${NO_3}^-$에 의한 redox buffer 작용이 없어지므로 토양의 환원현상이 크게 촉진될 수 있는 것이다. 따라서 요소+N-serve 처리에서는 다른 처리에 비하여 Fe(III)의 환원과 함께 토양 용액의 ${PO_4}^{3-}$ 함량이 현저히 증가하였다. 질산화저해제와 함께 요소를 처리한 경우 토양 용액중의 N 및 P 함량과 함께 벼 유묘 지상부의 N과 P 함량이 가장 높았음에도 불구하고 그 생장은 가장 불량하였다. 이와 같이 요소+N-serve 처리에서 나타난 벼 유묘 생장 저해 현상은 과도한 Fe(II)의 용출과 그에 따른 벼 유묘의 Fe 과잉흡수에 기인하는 것으로 판단된다.

Keywords

References

  1. Achtnich, C., Bak, F., Conrad, R., 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil, Biol. Fertil. Soils 19, 65-72. https://doi.org/10.1007/BF00336349
  2. Anderson, J.M., 1982. Effect of nitrate concentration in lake water on phosphate release from the sediment, Water Res. 16, 1119-1126. https://doi.org/10.1016/0043-1354(82)90128-2
  3. Becker, M., Asch, F., 2005. Iron-toxicity in rice - conditions and management concepts, J. Plant Nutr. Soil Sci. 168, 558-573. https://doi.org/10.1002/jpln.200520504
  4. Chung, J.B., 2009. Effect of nitrate on iron reduction and phosphate release in flooded paddy soil, Korean. J. Environ. Agric. 28, 165-170. https://doi.org/10.5338/KJEA.2009.28.2.165
  5. De Datta, S.K., 1981. Principles and practices of rice production, Wiley, New York.
  6. Hong, J.K., Hong, C.W., 1977. The characteristics of phosphorus in major Korean soils, I. The characteristics of inorganic phosphorus, J. Korean Soc. Soil Sci. Fert. 10, 13-22.
  7. Hsu, O.H., 1965. Fixation of phosphate by aluminum and iron in acidic soils, Soil Sci. 99, 398-402. https://doi.org/10.1097/00010694-196506000-00008
  8. Kim, B.H., Chung, J.B., 2010. Effect of nitrate in irrigation water on iron reduction and phosphate release in anoxic paddy soil condition, Korean J. Soil Sci. Fert. 43, 68-74.
  9. Liao, Z.W., Woodard, H.J., Hossner, L.R., 1994. The relationship of soil and leaf nutrients to rice leaf oranging, J. Plant Nutr. 17, 1781-1802. https://doi.org/10.1080/01904169409364846
  10. Lucassen, E.C.H.E.T., Smolders, A.J.P., van der Salm, A.L., Roelofs, J.G.M., 2004. High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands, Biogeochemistry 67, 249-267. https://doi.org/10.1023/B:BIOG.0000015342.40992.cb
  11. Marschner, H., 1995. Mineral nutrition of higher plants, pp. 313-323, Academic Press, London.
  12. Matocha, C.J., Coyne, M.S., 2007. Short-term response of soil iron to nitrate addition, Soil Sci. Soc. Am. J. 71, 108-117. https://doi.org/10.2136/sssaj2005.0170
  13. Miller, W.P., Miller, D.M., 1987. A micro-pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18, 1-15. https://doi.org/10.1080/00103628709367799
  14. NAIST, 1988. Methods of soil chemical analysis, Rural Development Administration, Suwon, Korea.
  15. Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter, pp. 539-579, In Page A.L. et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties, SSSA, Madison, WI, USA.
  16. Olson, R.V., Ellis Jr., R., 1982. Iron, pp. 301-312, In Page A.L. et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties, SSSA, Madison, WI, USA.
  17. Ponnamperua, F.N., 1972. The chemistry of submerged soils, Adv. Agron. 24, 29-96. https://doi.org/10.1016/S0065-2113(08)60633-1
  18. Ponnamperua, F.N., 1985. Chemical kinetics of wetland rice soils relative to soil fertility, pp. 71-89, In Wetland soils: Characterization, classification and utilization, Research paper series, International Rice Research Institute, Manila.
  19. Sah, R.N., Mikkelsen, D.S., Hafez, A.A., 1989. Phosphorus behavior in flooded-drained soils: II. Iron transformation and phosphorus sorption, Soil Sci. Soc. Am. J. 53, 1718-1722. https://doi.org/10.2136/sssaj1989.03615995005300060018x
  20. Sallade, Y.E., Sims, J.T., 1997. Phosphorus transformations in the sediments of Delaware's agricultural drainageways: II. Effect of reducing conditions on phosphorus release, J. Environ. Qual. 26, 1579-1588. https://doi.org/10.2134/jeq1997.00472425002600060018x
  21. Sorensen, J., 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43, 319-324.
  22. Sposito, G., 1989. The chemistry of soils, Oxford University Press, New York, USA.
  23. Straub, K.L., Schonhuber, W.A., Buchholz-Cleven, D.E.E., Schink, B., 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling, Geomicrobiol. J. 21, 371-378. https://doi.org/10.1080/01490450490485854
  24. Stucki, J.W., Anderson, W.L., 1981. The quantitative assay of minerals for $Fe^{2+}$ and $Fe^{3+}$ using 1,10- phenanthroline : I. Sources of variability, Soil Sci. Soc. Am. J. 45, 633-637. https://doi.org/10.2136/sssaj1981.03615995004500030039x
  25. Surridge, B.W.J., Heathwaite, A.L., Baird, A.J., 2007. The release of phosphorus to pore water and surface water from river riparian sediments, J. Environ. Qual. 36, 1534-1544. https://doi.org/10.2134/jeq2006.0490
  26. Weber, K.A., Pollock, J., Cole, K.A., O'Connor, S.M., Achenbach, L.A., Coates, J.D., 2006. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002, Appl. Environ. Microbiol. 72, 686-694. https://doi.org/10.1128/AEM.72.1.686-694.2006
  27. Young, E.O., Ross, D.S., 2001. Phosphate release from seasonally flooded soils: A laboratory microcosm study, J. Environ. Qual. 30, 91-101. https://doi.org/10.2134/jeq2001.30191x