DOI QR코드

DOI QR Code

Changes of Tomato Growth and Soil Chemical Properties as Affected by Soil pH and Nitrogen Fertilizers

토양 pH와 질소 관비 비종에 따른 토마토 생육 및 토양화학성 변화

  • Kang, Yun-Im (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Roh, Mi-Young (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kwon, Joon-Kook (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Kyoung-Sub (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Myeong-Whan (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Si-Young (Planning & Coordination, RDA) ;
  • Lee, In-Bok (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kang, Nam-Jun (Department of Horticulture, Gyeongsang National University)
  • 강윤임 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 노미영 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 권준국 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 박경섭 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 조명환 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 이시영 (농촌진흥청 연구정책국) ;
  • 이인복 (농촌진흥청 국립원예특작과학원) ;
  • 강남준 (국립경상대학교 원예학과)
  • Received : 2010.10.26
  • Accepted : 2010.12.09
  • Published : 2010.12.30

Abstract

This study was conducted to determine effects of soil pH and form of nitrogen fertilizers on tomato growth and chemical properties of greenhouse soil using ferigation system. Tomato (Lycopersicon esculentum Mill. cv. Superdoterang) were grown for three months in 18 L pots filled with two soil (pH 6.8 and pH 8.7). 4 different nitrogen fertilizers (urea, ammonium nitrate, ammonium sulfate, and potassium nitrate) were fertigated with different concentrations of 0, 10, 50, and 100 mg N/L during tomato cultivation. Soil pH 8.7 decreased yield and chlorophyll fluorescence compared with soil pH 6.8. Yield at soil pH 8.7 increased by ammonium nitrate and ammonium sulfate fertigation. Soil pH 6.8 induced increment of yield by nitrogen concentration than form of nitrogen fertilizers. Soil pH after cultivation of tomato decreased by application of ammonium nitrate and ammonium sulfate. Soil EC by 100 mg N/L application of ammonium sulfate was twice as much as other fertilizers. Form of nitrogen fertilizer had less effect on concentration of soil $NH_4^+$-N and $NO_3^-$-N in soil but the concentrations slightly reduced at pH 8.7. These results indicate that application of urea and ammonium nitrate for a nitrogen source of fertigation has little affects on soil chemical properties before and after tomato cultivation.

이 실험은 관비재배시 토양 pH와 질소 비종이 토마토 생육과 토양화학성에 미치는 영향에 대해 조사하고자 수행하였다. 시험작물은 동양계 품종인 '슈퍼도태랑'을 이용하여 18 L포트에서 3개월간 재배하였으며 토양 pH를 6.88과 8.77 두수준으로 조절하였다. 주요 관비 비종인 요소, 질산암모늄, 황산암모늄, 질산칼륨를 이용하였으며 관비 농도는 0, 10, 50, 100 mg N/L로 조절하였다. 토양의 pH가 8.77일 때 pH 6.88에 비하여 수량과 엽록소 형광반응이 감소하였으나 질산암모늄과 황산암모늄을 이용하여 관비할 경우 토마토 수량이 증가하는 것으로 나타났다. pH 6.88일 경우 비종보다는 관비 농도가 증가할수록 수량이 증가하였다. 토마토 재배후 비종에 따른 화학성 변화를 살펴보면 토양의 pH는 질산암모늄과 황산암모늄을 시용하였을 경우 감소하였으며 질산 칼륨 시용 시 토양 pH와 칼륨함량이 높아졌다. 토양 내 EC는 황산암모늄 100 mg N/L 시용 시 다른 비종에 비하여 2배 이상 높아졌다. 질산태질소와 암모늄태 질소는 비종별로 크게 차이는 없었지만 pH가 높을 때 토양 내 함량이 적은 것으로 나타났다. 이 실험 결과 요소와 질산암모늄을 관비용 비종으로 이용하면 토마토 재배 전 후 토양화학성의 변화가 크지 않은 것으로 나타났다.

Keywords

References

  1. Ben-Olie, G., Kant, S., Naim, M., Rabinowitch, H. D., Takeoka, G. R., Buttery, R. G., Kafkafi, U., 2005. Effects of ammonium to nitrate ratio and salinity on yield and fruit quality of large and small tomato fruit hybrids, J. Plant Nutr. 27(10), 1795-1812. https://doi.org/10.1081/PLN-200026430
  2. Clarkson, D. T., Saker, L. R., Purves, J. V., 1989. Depression of nitrate and ammonium transport in barley plants with diminished sulphate status. Evidence of co-regulation of nitrogen and sulphate intake, J. Exp. Bot. 40(9), 953. https://doi.org/10.1093/jxb/40.9.953
  3. Cushman, K. E., Snyder, R. G., 2002. SWINE EFFLUENT COMPARED TO INORGANIC FETILIZERS FRORTOMATO PRODUCTION, J. Plant Nutr. 25(4), 809-820. https://doi.org/10.1081/PLN-120002961
  4. Gijsman, A., 1990. Rhizosphere pH along different root zones of Douglas-fir (Pseudotsuga menziesii), as affected by source of nitrogen, Plant and Soil 124(2), 161-167. https://doi.org/10.1007/BF00009254
  5. Hajiboland, R., Yang, X., Romheld, V., 2003. Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye, Plant and Soil 250(2), 349-357. https://doi.org/10.1023/A:1022862125282
  6. Hanson, B., Simunek, J., Hopmans, J., 2006. Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling, Agric. Water Manage. 86(1-2), 102-113. https://doi.org/10.1016/j.agwat.2006.06.013
  7. Haynes, R., 1985. Principles of fertilizer use for trickle irrigated crops, Nutr. Cycl. Agroecosyst. 6(3), 235-255.
  8. Islam, A., Edwards, D., Asher, C., 1980. pH optima for crop growth, Plant and Soil 54(3), 339-357. https://doi.org/10.1007/BF02181830
  9. Lee, I. B., Lim J. H., Park J. M., 2007. Effect of Reduced Nitrogen Fertigation Rates on Growth and Yield of Tomato, Kor. J. Environ. Agric. 26(4) 306-312. https://doi.org/10.5338/KJEA.2007.26.4.306
  10. Marschner, H., 1995. Mineral nutrition of higher plants, pp. 30-65, second ed. Academic Press, UK.
  11. Mohammad, M., 2004. Squash yield, nutrient content and soil fertility parameters in response to methods of fertilizer application and rates of nitrogen fertigation, Nutr. Cycl. Agroecosyst. 68(2), 99-108. https://doi.org/10.1023/B:FRES.0000019036.64212.9c
  12. Motis, T., Kemble, J., Dangler, J., Brown, J., 1998. Tomato fruit yield response to nitrogen source and percentage of drip-or band-applied nitrogen associated with leaf potassium concentration, J. Plant Nutr. 21(6), 1103-1112. https://doi.org/10.1080/01904169809365469
  13. Mulvaney, R. L., Khan, S. A., Mulvaney, C. S., 1997. Nitrogen fertilizers promote denitrification, Biol. Fertil. Soils 24(2), 211-220. https://doi.org/10.1007/s003740050233
  14. NIAST. 2000. Method of soil and plant analysis, National Institute of Agricultural Science and Technology. RDA, Korea.
  15. NIAST. 2001. Annual report of the monitoring project on agro-environmental quality, National Institute of Agricultural Science and Technology. RDA, Korea.
  16. NIAST. 2007, Water management in upper soil, National Institute of Agricultural Science and Technology. RDA, Korea.
  17. Papadopoulos, I., 1987. Nitrogen fertigation of greenhouse- grown tomato, Commun. in Soil Sci. Plant Anal. 18(8), 897-907. https://doi.org/10.1080/00103628709367869
  18. Peryea, F. J., Burrows, R. L., 1999. Soil acidification caused by four commercial nitrogen fertilizer solutions and subsequent soil pH rebound, Commun. in Soil Sci. Plant Anal. 30(3), 525-533. https://doi.org/10.1080/00103629909370223
  19. Sandoval-Villa, M., Guertal, E. A., Wood, C. W., 2001. Greenhouse tomato response to low ammoniumnitrogen concentrations and duration of ammoniumnitrogen supply, J. Plant Nutr. 24(11), 1787-1798. https://doi.org/10.1081/PLN-100107312
  20. Silber, A., Ganmore-Neumann, R., Ben-Jaacov, J., 1998. Effects of nutrient addition on growth and rhizosphere pH of Leucadendron 'Safari Sunset', Plant and Soil 199(2), 205-211. https://doi.org/10.1023/A:1004365110616
  21. Singandhupe, R. B., Rao, G., Patil, N. G., Brahmanand, P. S., 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.), Europ. J. Agronomy 19(2), 327-340. https://doi.org/10.1016/S1161-0301(02)00077-1
  22. Syvertsen, J. P., Boman, B., Tucker, D. P. H., 1989. Salinity in Florida citrus production, Proc. Fla. State Hort. Soc. 102, 61-64.
  23. Tagliavini, M., Masia, A., Quartieri, M., 1995. Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers, Plant and Soil 176(2), 263-271. https://doi.org/10.1007/BF00011790
  24. Tang, C., Cobley, B. T., Mokhtara, S., Wilson, C. E., Greenway, H., 1993. High pH in the nutrient solution impairs water uptake in Lupinus angustifolius L, Plant and Soil 155(1), 517-519. https://doi.org/10.1007/BF00025097
  25. Thomson, C. J., Marschner, H., Romheld, V., 1993. Effect of nitrogen fertilizer form on pH of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean, J. Plant Nutr. 16(3), 493-506. https://doi.org/10.1080/01904169309364548
  26. Walter, A., Silk, W. K., Schurr, U., 2000. Effect of Soil pH on Growth and Cation Deposition in the Root Tip of Zea mays L, J. PLANT GROWTH REGUL. 19(1), 65-76. https://doi.org/10.1007/PL00021160
  27. Watson, C. J., 1987. The comparative effects of ammonium nitrate, urea or a combined ammonium nitrate/ urea granular fertilizer on the efficiency of nitrogen recovery by perennial ryegrass, Nutr. Cycl. Agroecosyst. 11(1), 69-78.
  28. Yang, E. Y., Park, K. S., Oh,J. S., Lee, H. j., Lee, Y. B., 2008. Effect of Mineral Nutrient Control on Nutrient uptake, Growth and Yield of Single-Node Cutting Rose Grown in a Closed Hydropoic System, J. Bio-Environ. Cont. 17(4), 252-260.

Cited by

  1. Effect of Nitrogen Fertilizer on the Growth and Antioxidant Activities of Prunella vulgaris and Campanula takesimana vol.17, pp.1, 2014, https://doi.org/10.11628/ksppe.2014.17.1.023