Glyceryl Esterification of Fibroin Peptide by Papain

파파인을 이용한 피브로인 펩타이드의 글리세릴 에스터화 반응

  • Jeong, Jae-Ho (Nanomedical Graduate Program, Yonsei University) ;
  • Lee, Shin-Young (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hur, Won (Department of Bioengineering and Technology, Kangwon National University)
  • 정재호 (연세대학교 나노메디칼 협동과정) ;
  • 이신영 (강원대학교 공과대학 생물공학과) ;
  • 허원 (강원대학교 공과대학 생물공학과)
  • Received : 2010.06.04
  • Accepted : 2010.08.23
  • Published : 2010.08.31

Abstract

Papain hydrolysate of fibroin was found to be mainly composed of several even-numbered peptides that can be produced at a large scale and can be used as a precursor for biological fine-chemicals such as peptide detergents. Thus, the hydrolysate was further modified to synthesize a peptide mixture of glyceryl esters using the identical enzyme for the production of such chemicals. Formation of glyceryl ester of each peptide was confirmed by identifying peaks of the nominal mass shift of +74 Da in mass spectrometry. Analysis of the mass spectra indicated that glyceryl esters of di- and tetra-peptides were the major constituents of the mixture and that alanylglycine was most preferentially esterified. It also suggests that papain prefers dipeptide to tetrapeptide and alanine to serine or tyrosine at $P_2$ position as substrate for glyceryl esterification. The glyceryl esters were recovered using ion exchange resin and the yield of glyceryl esterification recorded was 17.8% by weight.

본 연구에서는 파파인으로 가수분해된 피브로인 펩타이드에 글리세롤을 추가하고 동일한 효소인 파파인을 이용하여 글리세릴 에스터 결합을 형성시키는 반응을 수행하였다. 피브로인 펩타이드 10%와 글리세롤 50% 포함된 반응용액을 pH 3, $40^{\circ}C$의 반응 조건에서 글리세릴 에스터가 생성됨을 ESI 질량 분석을 통하여 확인하였다. 아울러 반응전 시료의 펩타이드의 조성과 생성된 글리세릴 펩타이드 에스터의 조성으로부터 헥사 및 옥타펩타이드의 비율은 감소하였고 디펩타이드와 테트라펩타이드의 글리세릴 에스터가 반응 생성물을 주로 구성되어 있으며 특히 AG-OGl의 조성이 증가하였음을 확인하였다. 글리세릴 펩타이드를 양이온교환수지 칼럼을 사용하여 미반응된 펩타이드와 분리하여 17.8%의 수율로 수득하였고, 이 시료를 FT-IR로 분석하여 펩타이드의 C말단의 $COO^-$의 감소를 확인하여 글리세릴 펩타이드임을 재확인하였다.

Keywords

References

  1. Shimura, K., A. Kikuchi, K. Ohtomo, Y. Katagata, and A. Hyodo (1976) Studies on silk fibroin of Bombyx mori. I. Fractionation of fibroin prepared from the posterior silk gland. J. Biochem. (Tokyo) 80: 693-702. https://doi.org/10.1093/oxfordjournals.jbchem.a131328
  2. Zhou, C., F. Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin (2001) Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins: Struct. Funct. Genet. 44: 119-122. https://doi.org/10.1002/prot.1078
  3. Jeong, J. and W. Hur (2010) Even-numbered peptides from a papain hydrolysate of silk fibroin. J. Chromatogr. B 878: 836-840. https://doi.org/10.1016/j.jchromb.2010.01.034
  4. Thacker, J. D., M. A. Brown, R. F. Rest, M. Purohit, S. Sassi-Gaha, and C. M. Artlett (2009) 1-Peptidyl-2- arachidonoyl-3-stearoyl-sn-glyceride: an immunologically active lipopeptide from goat serum (Capra hircus) is an endogenous damage-associated molecular pattern. J. Nat. Prod. 72: 1993-1999. https://doi.org/10.1021/np900360m
  5. Moran, C., M. R. Infante, and P. Clapes (2002) Synthesis of glycero amino acid-based surfactants. Part 2. Lipasecatalysed synthesis of 1-O-lauroyl-rac-glycero-3-O-($N_{a}$-acetyl- l-amino acid) and 1,2-di-O-lauroyl-rac-glycero- 3-O-($N_{a}$-acetyl-l-amino acid) derivatives. Org. Biomol. Chem. 2002: 1124-1134.
  6. Schechter, I. and A. Berger (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Comm. 27: 157-162. https://doi.org/10.1016/S0006-291X(67)80055-X
  7. Cantacuzene, D. and C. Guerreiro (1987) Papain catalyzed esterification of alanine by alcohols and diols. Tetrahedron Lett. 28: 5153-5156. https://doi.org/10.1016/S0040-4039(00)95615-6
  8. Kawashiro, K., H. Ishizaki, S. Sugiyama, and H. Hayashi (1993) Esterification of N-benzyloxycarbonyldipeptides in ethanol-water with immobilized papain. Biotechnol. Bioeng. 42: 309-314. https://doi.org/10.1002/bit.260420307
  9. Moriniere, J. L., B. Danree, J. Lemoine, and A. Guy (1988) Papain-assisted resolution of natural and xenobiotic a-amino acid. Synth. Commun. 18: 441-444. https://doi.org/10.1080/00397918808064007
  10. Mitin, Y. V., K. Braun, and P. Kuhl (1997) Papain catalyzed synthesis of glyceryl esters of N-protected amino acids and peptides for the use in trypsin catalyzed peptide synthesis. Biotechnol. Bioeng. 54: 287-290. https://doi.org/10.1002/(SICI)1097-0290(19970505)54:3<287::AID-BIT9>3.0.CO;2-B
  11. Lowbridge, J. and J. S. Fruton (1974) Studies on the extended active site of papain. J. Biol. Chem. 249: 6754-6761.
  12. Peptide mass calculator v3.2. http://rna.rega.kuleuven.ac.be/masspec/pepcalc.htm.(2010).
  13. D'agostino, P. A., J. R. Hancock, and L. R. Provost (1999) Packed capillary liquid chromatography-electrospray mass spectrometry analysis of organophosphorus chemical warfare agents. J. Chromatogr. A 840: 289-294. https://doi.org/10.1016/S0021-9673(99)00264-2
  14. Nakanishi, T. and A. Shimizu (2000) Determination of ionization efficiency of glycated and non-glycated peptides from the N-terminal of hemoglobin-chain by electrospray ionization mass spectrometry. J. Chromatogr. B 746: 83-89. https://doi.org/10.1016/S0378-4347(00)00115-8
  15. Kimmel, J. R. and E. L. Smith (1957) The properties of papain. Adv. Enzymol. Relat. Areas Mol. Biol. 19: 267-334.
  16. Deleris, G. and C. Petibois (2003) Applications of FT-IR spectrometry to plasma contents analysis and monitoring. Vib. Spectrosc. 32: 129-136. https://doi.org/10.1016/S0924-2031(03)00053-5