Screening of Protein Tyrosine Phosphatase 1B Inhibitory Activity from Some Vietnamese Medicinal Plants

  • Hoang, Duc Manh (Research Institute of Obesity Science, and Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Trung, Trinh Nam (College of Pharmacy, Chungnam National University) ;
  • Hien, Phan Thi Thu (Traditional Medicinal Departments, Ministry of Health) ;
  • Ha, Do Thi (College of Pharmacy, Chungnam National University) ;
  • Van Luong, Hoang (Vietnam Military Medical University) ;
  • Lee, Myoung-Sook (Research Institute of Obesity Science, and Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam National University)
  • Received : 2010.09.06
  • Accepted : 2010.10.28
  • Published : 2010.12.31

Abstract

Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling, has served as a potential drug target for the treatment of type 2 diabetes. The MeOH extracts of twenty-nine medicinal plants, traditionally used in Vietnam as anti-diabetes agents, were investigated for PTP1B inhibitory activity in vitro. The results indicated that, most materials showed moderate to strong inhibitory activity with $IC_{50}$ values ranging from $3.4\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$; meanwhile, eleven extracts (37.9%) could demonstrate PTP1B activity with $IC_{50}$ values less than $15.5\;{\mu}g/mL$; sixteen extracts (55.2%) could demonstrate PTP1B activity with $IC_{50}$ values ranging from $15.5\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$. The study may provide a proof, at least in a part, for the ethno-medical use in diabetes disease of these plants.

Keywords

References

  1. Ahmad, F., Li, P.M., Meyerovitch, J., and Goldstein, B.J., Osmotic loading of neutralizing antibodies demonstrates a role for protein- 0tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J. Biol. Chem., 270, 20503-20508 (1995). https://doi.org/10.1074/jbc.270.35.20503
  2. Ahmed, I., Lakhani, M.S., Gillett, M., John, A., and Raza, H., Hypotriglyceridemic and hypocholesterolemic effects of anti- diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 51, 155-61 (2001). https://doi.org/10.1016/S0168-8227(00)00224-2
  3. Chattopadhyay, R.R., A comparative evaluation of some blood sugar lowering agents of plant origin. J. Ethnopharmacol. 67, 367-372 (1999). https://doi.org/10.1016/S0378-8741(99)00095-1
  4. Chi, V.V., Dictionary of Vietnamese medicinal plants. Medical Publishing House, Hanoi, Vietnam (1997).
  5. Cui, L., Na, M.K., Oh, H., Bae, E.Y., Jeong, D.G., Ryu. S.E., Kim. S., Kim, B.Y., Oha, W.K., and Ahna, J.S., Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg. Med. Chem. Lett. 16, 1426-1429 (2006). https://doi.org/10.1016/j.bmcl.2005.11.071
  6. Dat, N.T., Jin. X., Lee, K., Hong, Y.S., Kim, Y.H., and Lee, J.J., Hypoxia- Inducible Factor-1 Inhibitory Benzofurans and Chalcone-Derived Diels-Alder Adducts from Morus Species. J. Nat. Prod. 72, 39-43 (2009). https://doi.org/10.1021/np800491u
  7. Djang, A., Dietary supplement for promoting control of blood-sugar levels and associated pathology in type 2 diabetics. PCT Int. Appl. (2005)
  8. Elchebly, M., Payette, P., michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C.C., Ranachandran, C., Gresser, M.J., Tremblay, M.L., and Kenedy, B.P., Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase 1B gene. Science, 283, 1544-1548 (1999). https://doi.org/10.1126/science.283.5407.1544
  9. Grover, J.K. and Yadav, S.P., Pharmacological actions and potential uses of Momordica charantia: a review. J. Ethnopharmacol. 93, 123-132 (2004). https://doi.org/10.1016/j.jep.2004.03.035
  10. Grover, J.K., Yadav, S., and Vats, V., Medicinal plants of India with antidiabetic potential. J. Ethnopharmacol. 81, 81-100 (2002). https://doi.org/10.1016/S0378-8741(02)00059-4
  11. Hamaguchi, T., Sudo, T., and Osada, H., RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1phase. FEBS Lett. 372, 54-58 (1995). https://doi.org/10.1016/0014-5793(95)00953-7
  12. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K., and Konoshita, T., Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48, 125-129 (1998). https://doi.org/10.1016/S0031-9422(97)01105-9
  13. Hoa, N.K., Norberg, A., Sillard, R., Dao, V.P., Thuan, N.D., Dzung, D.T. N., Jornvall, H., and Ostenson, C.G., The possible mechanisms by which phanoside stimulates insulin secretion from rat islets. J. Endocrinol. 192, 389-394 (2007). https://doi.org/10.1677/joe.1.06948
  14. Hoang, D.M., Ngoc, T.M., Dat, N.T., Ha, D.T., Kim, Y.H., Luong, H.V., Ahn, J.S., and Bae, K.H., Protein Tyrosine Phosphatase 1B Constituent Inhibitors from Morus bombycis. Bioorg. Med. Chem. Lett. 19, 6759-6761 (2009). https://doi.org/10.1016/j.bmcl.2009.09.102
  15. Johnson, T.O., Ermolieff, J., and Jirousek, M.R., Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov. 1, 696-709 (2002). https://doi.org/10.1038/nrd895
  16. Kenner, K., Anyanwu, E., Okefsky, J., and Kusari, J., Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J. Biol. Hem. 271, 19810-19816 (1996).
  17. Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Lubkin, M., Kim, Y.B., Sharpe, A.H., Stricker-Krongrad, A., Shulman, G.I., Nell, B.G., and Kahn, B.B., Increased energy expenditure, decreased adiposity and tissue-specific insulin sensitivity in protein tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol., 20, 5479-5489 (2000). https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  18. Lee, M.S., Kim, C.H., Hoang, D.M., Kim, B.Y., Sohn, C.B., Kim, M.R., and Ahn, J.S., Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol Pharm Bull. 32, 504-508 (2009). https://doi.org/10.1248/bpb.32.504
  19. Loi, D.T., Vietnamese Medicinal Plants and Ingredients. Medical Publishing House, Hanoi, Vietnam (2004).
  20. Megalli, S., Davies, N.M., and Roufogalis, B.D., Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the Zucker fatty rat. J. Pharm. Pharm. Sci. 9, 281-291 (2006).
  21. Meselhy, M.R., Kadota, S., Momose, Y., Hatakeyama, N., Kusai, A., Hattori, M., and Namba, T., Two new quinochalcone yellow pigments from Carthamus tinctorius and $Ca^{2+}$ antagonistic activity of tinctormine. Chem. Pharm. Bull. 41, 1796-1802 (1993). https://doi.org/10.1248/cpb.41.1796
  22. Miura, T., Kako, M., Ishihara, E., Usami, M., Yano, H., Tanigawa, K., Sudo, K., and Seino, Y., Antidiabetic effect of Seishin-kanro-to in KKAy mice. Planta Med. 63, 320-322 (1997). https://doi.org/10.1055/s-2006-957691
  23. Na, M., Cui, L., Min, B.S., Bae, K., Yoo, J.K., Kim, B.Y., Oh, W.K., and Ahn, J.S., Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana, Bioorg. Med. Chem. Lett. 16, 3273-3276 (2006). https://doi.org/10.1016/j.bmcl.2006.03.036
  24. Nakagawa, K., Kishida, H., Arai, N., Nishiyama, T., and Mae, T., Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-Ay mice. Biol. Pharm. Bull. 27, 1775-1778 (2004). https://doi.org/10.1248/bpb.27.1775
  25. Ngo, H.N., Teel, R.W., and Lau, B.H. S., Modulation of mutagenesis, DNA binding, and metabolism of aflatoxin B1 by licorice compounds. Nutrition Res. 12, 247-257 (1992). https://doi.org/10.1016/S0271-5317(05)80730-4
  26. Nishino, H., Yoshioka, K., Iwashima, A., Takizawa, H., Konishi, S., Okamoto, H., Okabe, H., Shibata, S., Fujiki, H., and Sugimura, T., Glycyrrhetic-Acid inhibits tumor-promoting activity of teleocidin and 12-O-tetradecanoylphorbol-13-acetate in two-stage mouse skin carcinogenis. Japan. J. Cancer Res. 77, 33-38 (1986).
  27. Nomura, T., Fukai, T., Hano, Y., and Urano, S., Constituents of the Chinese Crude Drug "S ng-Bái-Pí" (Morus Root Bark). Planta Med. 47, 95-99 (1983). https://doi.org/10.1055/s-2007-969961
  28. Norberg, A., Hoa, N.K., Liepinsh, E., Phan, D.V., Thuan, N.D., Joernvall, H., Sillard, R., and Oestenson, C.G., A Novel Insulin-releasing substance, phanoside, from the plant Gynostemma pentaphyllum. J. Biol. Chem. 279, 41361-41367 (2004). https://doi.org/10.1074/jbc.M403435200
  29. Nose, M., Fujimoto, T., Takeda, T., Nishibe, S., and Ogihara, Y., Structural transformation of lignan compounds in rat gastrointestinal tract. Planta Med. 58, 520-523 (1992). https://doi.org/10.1055/s-2006-961540
  30. Nose, M., Ito, M., Kamimura, K., Shimizu, M., and Ogihara, Y., A comparison of the antihepatotoxic activity between glycyrrhizin and glycyrretic acid. Planta Med. 60, 136-139 (1994). https://doi.org/10.1055/s-2006-959435
  31. Satoru, K., Tsumoru, W., Satoshi, M., Kaori, F., Junichi, O., and Shigeru, M., Antidiabetic compositions containing safflower extracts. PCT Int. Appl. p. 22 (2005).
  32. Schroder, G., Wehinger, E., Lukacin, R., Wellmann, F., Seefelder, W., Schwab, W., and Schroder, L., Flavonoid methylation: a novel 4- Omethyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different (2004).
  33. Seely, B., Staubs, P., Reichart, D., Berhanu, P., Milarsky, K., Saltiel, K., Kusari, J., and Olefsky, J., Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes, 45, 1379-1385 (1996). https://doi.org/10.2337/diabetes.45.10.1379
  34. Shi, Y.Q., Fukai, T., Sakagami, H., Chan, W.J., Yang, P.Q., Wang, F.P., and Nomura, T., Cytotoxic Flavonoids with Isoprenoid Groups from Morus mongolica. J. Nat. Prod. 64, 181-188 (2001). https://doi.org/10.1021/np000317c
  35. Singh, S.N., Vats, P., Suri, S., Shyam, R., Kumria, M.M.L., Ranganathan, S., and Sridharan, K., Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J. Ethnopharmacol. 76, 269-277 (2001). https://doi.org/10.1016/S0378-8741(01)00254-9
  36. Sohn, H.Y., Son, K.H., Kwon, C.S., Kwon, G.S., and Kang, S.S., Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine. 11, 666-672 (2004). https://doi.org/10.1016/j.phymed.2003.09.005
  37. Takagi, K. and Ishii, Y., New coumarins isolated from the roots of some plant extracts such as Glycyrrhiza glabra. Arzneim. Forsh, 17, 1544- 1547 (1967).
  38. Tonks, N.K., PTP1B: From the sidelines to the front lines. FEBS Lett. 546, 140-148 (2003). https://doi.org/10.1016/S0014-5793(03)00603-3
  39. Vietnam National Diabetes Federation Conference, June 23, (2003).
  40. Wang, W.Q., Sun, J.P., and Zhang, Z.W., An overview of the protein tyrosine phosphatase superfamily. Curr. Top. Med. Chem., 3, 739-748 (2003). https://doi.org/10.2174/1568026033452302
  41. Welihinda, J., Karunanayake, E.H., Sheriff, M.H., and Jayasinghe, K.S., Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J. Ethnopharmacol. 17, 277-282 (1986). https://doi.org/10.1016/0378-8741(86)90116-9
  42. White, F. and Rafique, G., Diabetes prevalence and projections in South Asia. The Lancet 360, 804-805 (2002).
  43. Xie, L., Lee, S.Y., Andersen, J.N., Waters, S., Shen, K., Guo, X.L., Moller, N.P., Olefsky, J.M., Lawrence, D.S., and Zhang, Z.Y., Cellular effects of small meleclue PTP1B inhibitors on insulin signaling. Biochemistry, 42, 12792-12804 (2003). https://doi.org/10.1021/bi035238p
  44. Zani, F., Cuzzoni, M.T., Daglia, M., Benvenuti, S., Vampa, G., and Mazza, P., Mutual interactions among ingredients of betel quid in inducing genotoxicity on Chinese hamster ovary cells. Planta Med. 59, 502-507 (1993). https://doi.org/10.1055/s-2006-959748
  45. Zhang, R., Zhou, J., Jia, Z., Zhang, Y., and Gu, G., Hypoglycemic effect of Rehmannia glutinosa oligosaccharide in hyperglycemic and alloxan-induced diabetic rats and its mechanism. J. Ethnopharmacol. 90, 39-43 (2004). https://doi.org/10.1016/j.jep.2003.09.018
  46. Zinker, B.A., Rondinone, C.M., Trevillyan, J.M., Gum, R.J., Clampit, J.E., Waring, J.F., Xie, N., Wilcox, D., Jacobson, P., Frost, L., Kroeger, P.E., Reilly, R.M., Kotersky, S., Ppgenorth, T.J., Ulrich, R.G., Crossby, S., Butler, M., Murray, S.F., Mckay, R.A., Bhanot, S., Monia, B.P., and Jirousek, M.R., PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl. Acad. Sci. USA, 99, 11357-11362 (2002). https://doi.org/10.1073/pnas.142298199