DOI QR코드

DOI QR Code

Enhanced Stability of LiCoO2 Cathodes in Lithium-ion Batteries Using Surface Modification by Atomic Layer Deposition

  • Jung, Yoon-S. (Department of Mechanical Engineering, University of Colorado at Boulder) ;
  • Cavanagh, Andrew S. (Department of Physics, University of Colorado at Boulder) ;
  • Dillon, Anne C. (National Renewable Energy Laboratory) ;
  • Groner, Markus D. (Department of Chemistry and Biochemistry and Department of Chemical and Biological Engineering, University of Colorado at Boulder) ;
  • George, Steven M. (ALD NanoSolutions Inc.) ;
  • Lee, Se-Hee (WCU Hybrid Materials, Seoul National University)
  • Published : 2010.01.31

Abstract

Ultrathin atomic layer deposition (ALD) coatings were found to enhance the performance of lithium-ion batteries (LIBs). Previous studies have demonstrated that $LiCoO_2$ cathode powders coated with metal oxides with thicknesses of $\sim100-1000{\AA}$ grown using wet chemical techniques improved LIB performance. In this study, $LiCoO_2$ powders were coated with conformal $Al_2O_3$ ALD films with thicknesses of only $\sim3-4{\AA}$ established using 2 ALD cycles. The coated $LiCoO_2$ powders exhibited a capacity retention of 89% after 120 charge-discharge cycles in the 3.3~4.5 V (vs. $Li/Li^+$) range. In contrast, the bare $LiCoO_2$ powders displayed only a 45% capacity retention. This dramatic improvement may result from the ultrathin $Al_2O_3$ ALD film acting to minimize Co dissolution or to reduce surface electrolyte reactions.

Keywords

References

  1. J.-M. Tarascon and M. Armand, “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 414 [15] 359-67 (2001). https://doi.org/10.1038/35104644
  2. J. Cho, Y. J. Kim, T. J. Kim, and B. Park, “Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell,” Angew. Chem. Int. Ed., 40 [18] 3367-69 (2001). https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  3. J. N. Reimers and J. R. Dahn, “Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in $Li_xCoO_2$,” J. Electrochem. Soc., 139 [8] 2091-97 (1992). https://doi.org/10.1149/1.2221184
  4. J. Cho, Y. J. Kim, and B. Park, “Novel $LiCoO_2$ Cathode Material with $Al_2O_3$ Coating for a Li Ion Cell,” Chem. Mater., 12 [12] 3788-91 (2000). https://doi.org/10.1021/cm000511k
  5. C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, “Cathode Materials Modified by Surface Coating for Lithium Ion Batteries,” Electrochim. Acta, 51 [19] 3872-83 (2006). https://doi.org/10.1016/j.electacta.2005.11.015
  6. J. Cho, B. Kim, J. G. Lee, Y. W. Kim, and B. Park, “Annealing-Temperature Effect on Various Cutoff-Voltage Electrochemical Performances in AlPO4-Nanoparticle-Coated $LiCoO_2$,” J. Electrochem. Soc., 152 [1] A32-6 (2005). https://doi.org/10.1149/1.1825387
  7. Y. K. Sun, J. M. Han, S. T. Myung, S. W. Lee, and K. Amine, “Significant Improvement of High Voltage Cycling Behavior $AlF_3$-coated $LiCoO_2$ Cathode,” Electrochem. Comms., 8 [5] 821-26 (2006). https://doi.org/10.1016/j.elecom.2006.03.040
  8. M. Ritala and M. Leskela, “Atomic Layer Deposition,” pp. 103-59, in Handbook of Thin Film Materials. Ed. By H. S. Nalwa, Academic Press, San Diego, CA, 2001.
  9. M. Leskela and M. Ritala, “Atomic Layer Deposition (ALD): from Precursors to Thin Film Structures,” Thin Solid Films, 409 [1] 138-46 (2002). https://doi.org/10.1016/S0040-6090(02)00117-7
  10. M. Q. Snyder, S. A. Trebukhova, B. Ravdel, M. C. Wheeler, J. DiCarlo, C. P. Tripp, and W. J. DeSisto, “Synthesis and Characterization of Atomic Layer Deposited Titanium Nitride Thin Films on Lithium Titanate Spinel Powder as a Lithium-ion Battery Anode,” J. Power Sources, 165 [1] 379-85 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.015
  11. A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, “Surface Chemistry of $Al_2O_3$ Deposition using $Al(CH_3)_3$ and $H_2O$ in a Binary Reaction Sequence,” Surf. Sci., 322 [1-3] 230-42 (1995). https://doi.org/10.1016/0039-6028(95)90033-0
  12. J. A. McCormick, B. L. Cloutier, A. W. Weimer, and S. M. George, “Rotary Reactor for Atomic Layer Deposition on Large Quantities of Nanoparticles,” J. Vac. Sci. Technol. A, 25 [1] 67-74 (2007). https://doi.org/10.1116/1.2393299
  13. Y. J. Kim, H. Kim, B. Kim, D. Ahn, J. G. Lee, T. J. Kim, D. Son, J. Cho, Y. W. Kim, and B. Park, “Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating,” Chem. Mater., 15 [7] 1505-11 (2003). https://doi.org/10.1021/cm0201403
  14. M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, and L. Heider, “Solid-State Electrochemical Kinetics of Li-Ion Intercalation into $Li_{1-x}CoO_2$: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EISJ,” Electrochem. Soc., 146 [4] 1279-89 (1999). https://doi.org/10.1149/1.1391759
  15. M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, and M. A. Anderson, “$ZrO_2$- and $Li_2ZrO_3$-stabilized Spinel and Layered Electrodes for Lithium Batteries,” Electrochem. Comms., 5 [9] 752-58 (2003). https://doi.org/10.1016/S1388-2481(03)00179-6
  16. D. Aurbach, “The Electrochemical Behavior of Lithium Salt Solutions of $\gamma$-Butyrolactone with Noble Metal Electrodes,” J. Electrochem. Soc., 136 [4] 906-13 (1989). https://doi.org/10.1149/1.2096876
  17. G. G. Amatucci, J.-M. Tarascon, and L. C. Klein, “Cobalt Dissolution in $LiCoO_2$-based Non-aqueous Rechargeable Batteries,” Solid State Ionics, 83 [1-2] 167-73 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
  18. NIST X-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003); http://srdata.nist.gov/xps.

Cited by

  1. In Situ Reaction Mechanism Studies on Lithium Hexadimethyldisilazide and Ozone Atomic Layer Deposition Process for Lithium Silicate vol.117, pp.27, 2013, https://doi.org/10.1021/jp312309g
  2. and its oxidation in ambient vol.37, pp.2, 2019, https://doi.org/10.1116/1.5079583