DOI QR코드

DOI QR Code

Pd(II)-Catalyzed Acetoxylation of Uracil via Electrophilic Palladation

  • Lee, Hyun-Seung (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Se-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Published : 2010.01.20

Abstract

Keywords

References

  1. Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172-1175. https://doi.org/10.1126/science.1141956
  2. Li, R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973-5975. https://doi.org/10.1021/om060889d
  3. Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972-4973. https://doi.org/10.1021/ja060809x
  4. Daugulis, O.; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046-4048. https://doi.org/10.1002/anie.200500589
  5. Cheng, D.; Gallagher, T. Org. Lett. 2009, 11, 2639-2641. https://doi.org/10.1021/ol900627q
  6. Bravo, J.; Cativiela, C.; Navarro, R.; Urriolabeitia, E. P. J. Organometal. Chem. 2002, 650, 157-172. https://doi.org/10.1016/S0022-328X(02)01148-8
  7. Park, J.-W.; Jun, C.-H. ChemCatChem. 2009, 1, 69-71. https://doi.org/10.1002/cctc.200900093
  8. Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285-13293. https://doi.org/10.1021/ja8045519
  9. Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149-4152. https://doi.org/10.1021/ol051486x
  10. Dick, A. R.; Kampf, J. W.; Sanford, M. S. Organometallics 2005, 24, 482-485. https://doi.org/10.1021/om049163c
  11. Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301. https://doi.org/10.1021/ja031543m
  12. Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141-1144. https://doi.org/10.1021/ol0530272
  13. Tang, S.; Peng, P.; Wang, Z.-Q.; Tang, B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X. Org. Lett. 2008, 10, 1875-1878. https://doi.org/10.1021/ol8006315
  14. Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717-4720. https://doi.org/10.1021/jo8003088
  15. Kim, S. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 5863-5866. https://doi.org/10.1016/j.tetlet.2008.07.141
  16. Mutule, I.; Suna, E.; Olofsson, K.; Pelcman, B. J. Org. Chem. 2009, 74, 7195-7198. https://doi.org/10.1021/jo901321b
  17. Riviere, J.; Bergeron, F.; Tremblay, S.; Gasparutto, D.; Cadet, J.; Wagner, J. R. J. Am. Chem. Soc. 2004, 126, 6548-6549. https://doi.org/10.1021/ja049438f
  18. Kang, J. I., Jr.; Sowers, L. C. Chem. Res. Toxicol. 2008, 21, 1211-1218. https://doi.org/10.1021/tx800037h
  19. Rabi, J. A.; Fox, J. J. J. Org. Chem. 1972, 37, 3898-3901. https://doi.org/10.1021/jo00797a028
  20. Thiviyanathan, V.; Somasunderam, A.; Volk, D. E.; Hazra, T. K.; Mitra, S.; Gorenstein, D. G. Biochem. Biophy. Res. Commun. 2008, 366, 752-757. https://doi.org/10.1016/j.bbrc.2007.12.010
  21. Kondo, Y.; Witkop, B. J. Am. Chem. Soc. 1969, 91, 5264-5270. https://doi.org/10.1021/ja01047a015
  22. Majumdar, K. C.; Chattopadhyay, B. Synlett 2008, 979-982.
  23. Grabovskiy, S. A.; Abdrakhmanova, A. R.; Murinov, Y. I.; Kabal'nova, N. N. Curr. Org. Chem. 2009, 13, 1733-1736. https://doi.org/10.2174/138527209789578081
  24. Majumdar, K. C.; Mondal, S. Tetrahedron 2009, 65, 9604-9608. https://doi.org/10.1016/j.tet.2009.09.059
  25. Bergstrom, D. E.; Ogawa, M. K. J. Am. Chem. Soc. 1978, 100, 8106-8112. https://doi.org/10.1021/ja00494a014
  26. Bigge, C. F.; Kalaritis, P.; Deck, J. R.; Mertes, M. P. J. Am. Chem. Soc. 1980, 102, 2033- 2038. https://doi.org/10.1021/ja00526a044
  27. Ruth, J. L.; Bergstrom, D. E. J. Org. Chem. 1978, 43, 2870-2876. https://doi.org/10.1021/jo00408a026
  28. Mendonca, F. J. B., Jr.; dos Anjos, J. V.; Sinou, D.; de Melo, S. J.; Srivastava, R. M. Synthesis 2007, 1890-1897.
  29. Amblard, F.; Nolan, S. P.; Schinazi, R. F.; Agrofoglio, L. A. Tetrahedron 2005, 61, 537-544. https://doi.org/10.1016/j.tet.2004.11.019
  30. Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780. https://doi.org/10.1016/j.tet.2009.07.034
  31. Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3858-3861. https://doi.org/10.1016/j.tetlet.2008.04.080
  32. Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Tetrahedron Lett. 2007, 48, 8619-8622. https://doi.org/10.1016/j.tetlet.2007.10.043
  33. Kim, H. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3154-3157. https://doi.org/10.1016/j.tetlet.2008.11.127
  34. Kim, H. S.; Gowrisankar, S.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6569-6572. https://doi.org/10.1016/j.tetlet.2008.09.017
  35. Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 726-728. https://doi.org/10.5012/bkcs.2009.30.3.726
  36. Gowrisankar, S.; Kim, K. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 2537-2539. https://doi.org/10.5012/bkcs.2008.29.12.2537
  37. Campbell, J. A.; Broka, C. A.; Gong, L.; Walker, K. A. M.; Wang, J.-H. Tetrahedron Lett. 2004, 45, 4073-4075. https://doi.org/10.1016/j.tetlet.2004.03.153
  38. Roh, K. R.; Kim, J. Y.; Kim, Y. H. Chem. Lett. 1998, 1095-1096.
  39. Barlin, G. B.; Riggs, N. V. J. Chem. Soc. 1954, 3125-3128. https://doi.org/10.1039/jr9540003125
  40. Prakash, O.; Kaur, H.; Sharma, V.; Bhardwaj, V.; Pundeer, R. Tetrahedron Lett. 2004, 45, 9065-9067. https://doi.org/10.1016/j.tetlet.2004.10.037
  41. Quideau, S.; Pouysegu, L.; Avellan, A.-V.; Whelligan, D. K.; Looney, M. A. Tetrahedron Lett. 2001, 42, 7393-7396. https://doi.org/10.1016/S0040-4039(01)01514-3
  42. Wang, J.-Y.; Liu, S.-P.; Yu, W. Synlett 2009, 2529-2533.

Cited by

  1. Iodonium Salts Are Key Intermediates in Pd-Catalyzed Acetoxylation of Pyrroles vol.13, pp.16, 2011, https://doi.org/10.1021/ol201665c
  2. Transition-metal-catalyzed acetoxylation of heterocycles: all that glitters is not palladium vol.48, pp.1, 2012, https://doi.org/10.1007/s10593-012-0967-5
  3. Dehydrogenative alkenylation of uracils via palladium-catalyzed regioselective C–H activation vol.49, pp.35, 2013, https://doi.org/10.1039/c3cc41130c
  4. Copper-catalyzed aerobic cascade cycloamination and acyloxylation: a direct approach to 4-acyloxy-1H-pyrazoles vol.13, pp.16, 2015, https://doi.org/10.1039/C5OB00409H
  5. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation vol.20, pp.3, 2015, https://doi.org/10.3390/molecules20034874
  6. -Chromenes: Diastereoselective Assembly of the Core Structure of Myristinin B through Dual CH Functionalization vol.21, pp.27, 2015, https://doi.org/10.1002/chem.201500755
  7. ChemInform Abstract: Pd(II)-Catalyzed Acetoxylation of Uracil via Electrophilic Palladation. vol.41, pp.21, 2010, https://doi.org/10.1002/chin.201021163
  8. Pd-catalyzed site selective C-H acetoxylation of aryl/heteroaryl/thiophenyl tethered dihydroquinolinones vol.3, pp.26, 2010, https://doi.org/10.1039/c3ra41312h
  9. Transition‐Metal‐Catalyzed Acyloxylation: Activation of C(sp2)–H and C(sp3)–H Bonds vol.2016, pp.20, 2010, https://doi.org/10.1002/ejoc.201600138
  10. Vicinal Functionalization of Uracil Heterocycles with Base Activation of Iodonium(III) Salts vol.99, pp.2, 2010, https://doi.org/10.3987/com-18-s(f)93