DOI QR코드

DOI QR Code

Novel Organic Sensitizers with a Quinoline Unit for Efficient Dye-sensitized Solar Cells

  • Choi, Hye-Ju (Department of Advanced Material Chemistry, Korea University) ;
  • Choi, Hyun-Bong (Department of Advanced Material Chemistry, Korea University) ;
  • Paek, Sang-Hyun (Department of Advanced Material Chemistry, Korea University) ;
  • Song, Ki-Hyung (Department of Chemical Education, Korea National University of Education) ;
  • Kang, Moon-Sung (Energy Lab, Samsung SDI Corporate R&D Center) ;
  • Ko, Jae-Jung (Department of Advanced Material Chemistry, Korea University)
  • Published : 2010.01.20

Abstract

Three organic sensitizers, JK-128, JK-129, and JK-130 containing quinoline unit are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-130 sensitized solar cell gave a short circuit photocurrent density of 11.52 mA $cm^{-2}$, an open circuit voltage of 0.70 V, and a fill factor of 0.75, corresponding to an overall conversion efficiency of 6.07%. We found that the $\eta$ of JK-130 was higher than those of other two cells due to the higher photocurrent. The higher $J_{sc}$ value is attributed to the broad and intense absorption spectrum of JK-130.

Keywords

References

  1. Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338. https://doi.org/10.1002/anie.200503083
  2. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  3. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  4. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys. Part 2 2006, 45, L638. https://doi.org/10.1143/JJAP.45.L638
  5. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  6. Cao, Y.; Bai, Y.; Yu, Q,; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. J. Phys. Chem. C 2009, 113, 6290. https://doi.org/10.1021/jp9006872
  7. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720. https://doi.org/10.1021/ja801942j
  8. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Gratzel, M. Chem. Commun. 2008, 5194.
  9. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218. https://doi.org/10.1021/ja0488277
  10. Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. Chem.Commun. 2009, 2198.
  11. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 327. https://doi.org/10.1002/anie.200703852
  12. Xu, M.; Wenger, S.; Bala, H.; Shi, D.; Li, R.; Zhou, T.; Zakeeruddin, S. M.; Gratzel, M.; Wang, P. J. Phys. Chem. C 2009, 113, 2966. https://doi.org/10.1021/jp809319x
  13. Kim, S.; Kim, D.; Choi, H.; Kang, M.-S.; Song, K.; Kang, S. O.; Ko, J. Chem. Commun. 2008, 4951.
  14. Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Chem. Mater. 2008, 20, 3993. https://doi.org/10.1021/cm8003276
  15. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J.-H.; Fantacci, S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, M. K.; Gratzel, M. J. Am. Chem. Soc. 2006, 128, 16701. https://doi.org/10.1021/ja066376f
  16. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New. J. Chem. 2003, 27, 783. https://doi.org/10.1039/b300694h
  17. Hara, K.; Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B 2005, 109, 23776. https://doi.org/10.1021/jp055572q
  18. Li, S.-L.; Jiang, K.-J.; Shao, K.-F.; Yang, L.-M. Chem. Commun. 2006, 2792.
  19. Wang, M.; Xu, M.; Shi, D.; Li, R.; Gao, F.; Zhang, G.; Yi, Z.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Adv. Mater. 2008, 20, 4460. https://doi.org/10.1002/adma.200801178
  20. Liu, W.-H.; Wu, I.-C.; Lai, C.-H.; Chou, P.-T.; Li, Y.-T.; Chen, C.-L.; Hsu, Y.-Y.; Chi, Y. Chem. Commun. 2008, 5152.
  21. Choi, H.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 1553. https://doi.org/10.1016/j.tet.2006.12.013
  22. Xu, M.; Wenger, S.; Bala, H.; Shi, D.; Li, R.; Zhou, Y.; Zakeeruddin, S. M.; Gratzel, M.; Wang, P. J. Phys. Chem. C 2009, 113, 2966. https://doi.org/10.1021/jp809319x
  23. Kim, J.-J.; Choi, H.; Lee, J.-W.; Kang, M.-S.; Song, K.; Kang, S. O.; Ko, J. J. Mater. Chem. 2008, 18, 5223. https://doi.org/10.1039/b809376h
  24. Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899. https://doi.org/10.1021/ol050417f
  25. Kim C.; Choi, H.; Kim, S.; Baik, C.; Song, K.; Kang, M.-S.; Kang, S. O.; Ko, J. J. Org. Chem. 2008, 73, 7072. https://doi.org/10.1021/jo8005182
  26. Cui, Y.; Zhang, X.; Jenekhe, S. A. Macromolecules 1999, 32, 3824. https://doi.org/10.1021/ma9901994
  27. Peng, Z. H.; Bao, Z. N.; Galvin, M. E. Adv. Mater. 1998, 10, 680. https://doi.org/10.1002/(SICI)1521-4095(199806)10:9<680::AID-ADMA680>3.0.CO;2-H
  28. Zhang, X.; Kale, D. M.; Jenekhe, S. A. Macromolecules 2002, 35, 382. https://doi.org/10.1021/ma0112164
  29. Tonzola, C. J.; Alam, M. M.; Bean, B. A.; Jenekhe, S. A. Macromolecules 2004, 37, 3554. https://doi.org/10.1021/ma035971o
  30. Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Adv. Mater. 2002, 14, 1086. https://doi.org/10.1002/1521-4095(20020805)14:15<1086::AID-ADMA1086>3.0.CO;2-9
  31. Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1992, 4, 95. https://doi.org/10.1021/cm00019a021
  32. Zhang, X.; Gorohmaru, H.; Kadowaki, M.; Kobayashi, T.; Ishi-I, T.; Thiemann, T.; Mataka, S. J. Mater. Chem. 2004, 14, 1901. https://doi.org/10.1039/b402645d
  33. Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugiharh, H.; Arakawa, H. Chem. Commun. 2000, 1173.
  34. Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys. Chem. B 2002, 106, 1363. https://doi.org/10.1021/jp0129380
  35. Wang, P.; Zakeeruddin, S. M.; Moser, J.-E.; Gratzelm M. J. Phys. Chem. B 2003, 107, 13280. https://doi.org/10.1021/jp0355399
  36. Bond, A. M.; Deacon, G. B.; Howitt, J.; MacFarlane, D. R.; Spiccia, L.; Wolfbauer, G. J. Electrochem. Soc. 1999, 146, 648. https://doi.org/10.1149/1.1391657
  37. Atechian, S.; Nock, N.; Norcross, R. D.; Ratni, H.; Thomas, A. W.; Verron, J.; Masciadri, R. Tetrahedron 2007, 63, 2811. https://doi.org/10.1016/j.tet.2007.01.050
  38. Nakade, S.; Kanzaki, T.; Wada, Y.; Yanagida, S. Langmuir 2005, 21, 10803. https://doi.org/10.1021/la051257j
  39. Kang, M.-S.; Ahn, K.-S.; Lee, J.-W.; Kang, Y. S. J. Photochem. Photobiol. A: Chem. 2008, 195, 198. https://doi.org/10.1016/j.jphotochem.2007.10.003
  40. Ahn, K.-S.; Kang, M.-S.; Lee, J.-K.; Shin, B.-C.; Lee, J.-W. Appl. Phys. Lett. 2006, 89, 013103. https://doi.org/10.1063/1.2218831
  41. Ahn, K.-S.; Kang, M.-S.; Lee, J.-W.; Kang, Y. S. J. Appl. Phys. 2007, 101, 084312. https://doi.org/10.1063/1.2721976
  42. Hara, K.; Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B 2005, 109, 23776. https://doi.org/10.1021/jp055572q

Cited by

  1. Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer vol.21, pp.16, 2011, https://doi.org/10.1039/c1jm10201j
  2. Organic Dyes Containing a Coplanar Indacenodithiophene Bridge for High-Performance Dye-Sensitized Solar Cells vol.76, pp.21, 2011, https://doi.org/10.1021/jo201730a
  3. Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of π-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells vol.116, pp.16, 2012, https://doi.org/10.1021/jp2109829
  4. Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells vol.13, pp.4, 2014, https://doi.org/10.1007/s10825-014-0628-2
  5. Utilization of electron‐deficient thiadiazole derivatives as π-spacer for the red shifting of absorption maxima of diarylamine-fluorene based dyes vol.134, pp.1, 2015, https://doi.org/10.1007/s00214-014-1596-0
  6. Facile Synthesis and Photophysical Characterization of New Quinoline Dyes vol.27, pp.1, 2017, https://doi.org/10.1007/s10895-016-1954-5
  7. Theoretical-Experimental Photophysical Investigations of the Solvent Effect on the Properties of Green- and Blue-Light-Emitting Quinoline Derivatives vol.27, pp.5, 2017, https://doi.org/10.1007/s10895-017-2108-0
  8. Effect of Extended Conjugation of N-Heterocyclic Carbene-Based Sensitizers on the Performance of Dye-Sensitized Solar Cells vol.56, pp.21, 2017, https://doi.org/10.1021/acs.inorgchem.7b01714
  9. ChemInform Abstract: Novel Organic Sensitizers with a Quinoline Unit for Efficient Dye-Sensitized Solar Cells vol.41, pp.20, 2010, https://doi.org/10.1002/chin.201020119
  10. New Bithiazole‐Based Sensitizers for Efficient and Stable Dye‐Sensitized Solar Cells vol.18, pp.25, 2012, https://doi.org/10.1002/chem.201103702
  11. Structure-property relationship of different electron donors: new organic sensitizers based on bithiazole moiety for high efficiency dye-sensitized solar cells vol.3, pp.36, 2010, https://doi.org/10.1039/c3ra00181d
  12. Highly efficient organic dyes containing a benzopyran ring as a p-bridge for DSSCs vol.3, pp.31, 2013, https://doi.org/10.1039/c3ra41583j
  13. Exploring photophysical properties of metal-free coumarin sensitizers: an efficient strategy to improve the performance of dye-sensitized solar cells vol.4, pp.96, 2010, https://doi.org/10.1039/c4ra07904c
  14. Small Donor–Acceptor Molecules Based on a Quinoline–Fluorene System with Promising Photovoltaic Properties vol.2016, pp.14, 2010, https://doi.org/10.1002/ejoc.201600318
  15. Cs-Symmetric Triphenylamine-Linked Bisthiazole-Based Metal-Free Donor-Acceptor Organic Dye for Efficient ZnO Nanoparticles-Based Dye-Sensitized Solar Cells: Synthesis, Theoretical Studies, vol.2, pp.9, 2010, https://doi.org/10.1021/acsomega.7b01100
  16. Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation vol.25, pp.3, 2010, https://doi.org/10.1007/s00894-019-3958-y
  17. Structural modulation of phenothiazine and coumarin based derivatives for high performance dye sensitized solar cells: a theoretical study vol.23, pp.23, 2021, https://doi.org/10.1039/d1cp00036e