DOI QR코드

DOI QR Code

Properties of ZnO:Al Films Prepared by Spin Coating of Aged Precursor Solution

  • Shrestha, Shankar Prasad (Department of Physics, Patan Multiple Campus, Tribhuvan University) ;
  • Ghimire, Rishi (Department of Physics, Kritipur Campus, Tribhuvan University) ;
  • Nakarmi, Jeevan Jyoti (Department of Physics, Kritipur Campus, Tribhuvan University) ;
  • Kim, Young-Sung (Technology Innovation Center, Sungkyunkwan University) ;
  • Shrestha, Sabita (Department of Physics and Center for Nanotubes and Nanostructured Composite, Sungkyunkwan University) ;
  • Park, Chong-Yun (Department of Physics and Center for Nanotubes and Nanostructured Composite, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry and Institute of Basic Science, Sungkyunkwan University)
  • 발행 : 2010.01.20

초록

Transparent conducting undoped and Al impurity doped ZnO films were deposited on glass substrate by spin coat technique using 24 days aged ZnO precursor solution with solution of ethanol and diethanolamine. The films were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity ($\rho$), carrier concentration (n), and hall mobility ($\mu$) measurements. XRD data show that the deposited film shows polycrystalline nature with hexagonal wurtzite structure with preferential orientation along (002) crystal plane. The SEM images show that surface morphology, porosity and grain sizes are affected by doping concentration. The Al doped samples show high transmittance and better resistivity. With increasing Al concentration only mild change in optical band gap is observed. Optical properties are not affected by aging of parent solution. A lowest resistivity ($8.5 \times 10^{-2}$ ohm cm) is observed at 2 atomic percent (at.%) Al. With further increase in Al concentration, the resistivity started to increase significantly. The decrease resistivity with increasing Al concentration can be attributed to increase in both carrier concentration and hall mobility.

키워드

참고문헌

  1. Chen, Y. F.; Ko, H. J.; Hong, S. K.; Sekiuchi, T.; Yao, T.; Segawa, Y. J. Vac. Sci. Technol. B 2000, 18, 1514. https://doi.org/10.1116/1.591416
  2. Jeong, S. H.; Lee, J. W.; Lee, S. B.; Boo, J. H. Surf. Coat. Technol. 2003, 174, 187. https://doi.org/10.1016/S0257-8972(03)00600-5
  3. Lee, H. W.; Choi, B. G.; Shim, K. B.; Oh, Y. J. J. Ceram. Proc. Res. 2005, 6, 880.
  4. Smith, A. Thin Solid Films 2000, 376, 47. https://doi.org/10.1016/S0040-6090(00)01403-6
  5. Li, H.; Wang, J.; Liu, H.; Zhang, H.; Li, X. J. of Cryst. Growth 2005, 275, e943. https://doi.org/10.1016/j.jcrysgro.2004.11.098
  6. Chang, J. F.; Kuo, H. H.; Leu, I. C.; Hon, M. H. Sens. & Actua. B 2002, 84, 258. https://doi.org/10.1016/S0925-4005(02)00034-5
  7. Guille'n, C.; Herrero, J. Thin Solid Films 2006, 515, 640. https://doi.org/10.1016/j.tsf.2005.12.227
  8. Lin, K.; Tsai, P. Mater. Sci. and Engin. B 2007, 139, 81. https://doi.org/10.1016/j.mseb.2007.01.050
  9. Weller, H. C.; Mauch, R. H.; Bauer, G. H. Sol. Energ. Mat. Sol. C 1992, 27, 217. https://doi.org/10.1016/0927-0248(92)90084-3
  10. Szyszka, B.; Jäger, S. J. Non-Cryst. Solids 1997, 218, 74. https://doi.org/10.1016/S0022-3093(97)00288-3
  11. Ellmer, K.; Wendt, R. Surf. Coat. Technol. 1997, 93, 21. https://doi.org/10.1016/S0257-8972(97)00031-5
  12. Lee, S. Y.; Li, Y.; Lee, J. S.; Lee, J. K.; Natasi, M.; Crooker, S. A.; Jia, Q. X. Appl. Phys. Lett. 2004, 85, 218. https://doi.org/10.1063/1.1771810
  13. Barnes, T. M.; Leaf, J.; Fry, C.; Wolden, C. A. J. Cryst. Growth 2005, 274, 412. https://doi.org/10.1016/j.jcrysgro.2004.10.015
  14. Nunes, P.; Fortunato, E.; Tonello, P.; Fernandes, F. B.; Vilarino, P.; Martins, R. Vacuum 2002, 64, 281. https://doi.org/10.1016/S0042-207X(01)00322-0
  15. Shrestha, S. P.; Basnet, P. Proc. of SPIE 2008, 6793, 67930I.
  16. Natsume, Y.; Sakata, H. Thin Solid Films 2000, 372, 30. https://doi.org/10.1016/S0040-6090(00)01056-7
  17. Xu, Z. Q.; Deng, H.; Li, Y.; Guo, Q. H.; Li, Y. R. Materials Research Bulletin 2006, 41, 354. https://doi.org/10.1016/j.materresbull.2005.08.014
  18. Li, H.; Wang, J.; Liu, H.; Zhang, H.; Li, X. J. of Cryst. Growth 2005, 275, 943. https://doi.org/10.1016/j.jcrysgro.2004.11.098
  19. Xue, S. W.; Zu, X. T.; Xiang, X.; Deng, H.; Xu, Z. Q. Eur. Phys. J. Appl. Phys. 2006, 35, 195. https://doi.org/10.1051/epjap:2006096
  20. Lee, J. H., Ko, K. H.; Park, B. O. J. of Crystal Growth 2003, 247, 119. https://doi.org/10.1016/S0022-0248(02)01907-3
  21. Lin, K.; Tsai, P. Sci. Eng. B 2007, 139, 81. https://doi.org/10.1016/j.mseb.2007.01.050
  22. Pankove, J. I. In Optical Processes in Semiconductors; Englewoord Cliffs, N., Ed.; Prentice-Hall Inc.: 1971.
  23. Bursteib, E. Phys. Rev. 1954, 93, 632. https://doi.org/10.1103/PhysRev.93.632
  24. Moss, T. S. Proc. Phys. Soc. Lond. B 1954, 67, 775. https://doi.org/10.1088/0370-1301/67/10/306
  25. Mass, J.; Bhattacharya, P.; Katiyar, R. S. Mater. Sci. Eng. B 2003, 103, 9. https://doi.org/10.1016/S0921-5107(03)00127-2

피인용 문헌

  1. Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Dioxynitroazobenzene Group with Enhanced Thermal Stability of Dipole Alignment vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3361
  2. O Thin Films Prepared by Sol-Gel Method vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3453
  3. Synthesis and Properties of Novel Polyurethane Containing Nitrophenylazocatecholic Group as NLO Chromophore vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.695
  4. Synthesis and Nonlinear Optical Properties of Novel Y-type Polyimide Containing Dioxynitroazobenzene Group vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1321
  5. Structural, Morphological, and LPG Sensing Properties of Al-Doped ZnO Thin Film Prepared by SILAR vol.2013, pp.1687-8442, 2013, https://doi.org/10.1155/2013/382380
  6. Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction vol.80, pp.2, 2013, https://doi.org/10.1007/s12043-012-0463-6
  7. Low-temperature crystal growth of aluminium-doped zinc oxide nanoparticles in a melted viscous liquid of alkylammonium nitrates for fabrication of their transparent crystal films vol.16, pp.46, 2014, https://doi.org/10.1039/C4CE01336K
  8. Influence of incorporation of Al3+ ions on the structural, optical and AC impedance characteristics of spin coated ZnO thin films vol.25, pp.1, 2014, https://doi.org/10.1007/s10854-013-1595-2
  9. Influence of Carbon Modification on the Morphological, Structural, and Optical Properties of Zinc Oxide Nanoparticles Synthesized by Pneumatic Spray Pyrolysis Technique vol.2017, pp.1687-4129, 2017, https://doi.org/10.1155/2017/9095301
  10. Synthesis and Nonlinear Optical Properties of Novel Polyester with Enhanced Second Harmonic Generation Thermal Stability vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3866
  11. Synthesis and Properties of Novel T-type Nonlinear Optical Polyurethane Containing Tricyanovinylthienyl Group with Enhanced Thermal Stability of Dipole Alignment vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.424
  12. A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment vol.2, pp.4, 2010, https://doi.org/10.12989/amr.2013.2.4.181
  13. Low temperature rf-sputtered In and Al co-doped ZnO thin films deposited on flexible PET substrate vol.40, pp.7, 2010, https://doi.org/10.1016/j.ceramint.2014.02.101
  14. ZnO:Al Thin Films by Successive Chemical Solution Deposition for Transistors Applications vol.1731, pp.None, 2010, https://doi.org/10.1557/opl.2015.468
  15. Al Concentration Effect on ZnO Based Thin Films: For Photovoltaic Applications vol.74, pp.None, 2010, https://doi.org/10.1016/j.egypro.2015.07.733
  16. Investigation of Structural, Morphological, Optical, and Electrical Properties of Al Doped ZnO Thin Films Via Spin Coating Technique vol.46, pp.4, 2010, https://doi.org/10.1080/15533174.2014.988795
  17. A deep look into the spray coating process in real-time—the crucial role of x-rays vol.28, pp.40, 2010, https://doi.org/10.1088/0953-8984/28/40/403003
  18. Structural and Optical Properties of Zinc Oxide (ZnO) based Thin Films Deposited by Sol-Gel Spin Coating Method vol.1116, pp.None, 2010, https://doi.org/10.1088/1742-6596/1116/3/032020
  19. Au-NiOx nanocomposite for hot electron-assisted plasmonic photocatalysis vol.8, pp.29, 2010, https://doi.org/10.1039/d0tc01507e