References
- Wyttenbach, T.; Witt, M.; Bowers, M. T. J. Am. Chem. Soc. 2000, 122, 3458. https://doi.org/10.1021/ja992546v
- Skurski, P.; Gutowski, M.; Barrios, R.; Simons, J. Chem. Phys. Lett. 2001, 337, 143. https://doi.org/10.1016/S0009-2614(01)00166-X
- Blom, M. N.; Compagnon, I.; Polfer, N. C.; Helden, G. V.; Meijer, G.; Suhai, S. S.; Paizs, B. B.; Oomens, J. J. Phys. Chem. A 2007, 111, 7309. https://doi.org/10.1021/jp070211r
- Xu, S.; Nilles, J. M.; Bowen, K. H. J. Chem. Phys. 2003, 119, 10696. https://doi.org/10.1063/1.1620501
- Aikens, C. M.; Gordon, M. S. J. Amer. Chem. Soc. 2006, 128, 12835. https://doi.org/10.1021/ja062842p
- Desfrançois, C.; Carles, S.; Schermann, J. P. Chem. Rev. 2000, 100, 3943. https://doi.org/10.1021/cr990061j
- Zwier, T. S. J. Phys. Chem. A 2001, 105, 8827. https://doi.org/10.1021/jp011659+
- Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee , S. J. Phys. Chem. B 2003, 107, 14109. https://doi.org/10.1021/jp031041v
- Park, S.-W.; Ahn, D.-S.; Lee, S. Chem. Phys. Lett. 2003, 371, 74. https://doi.org/10.1016/S0009-2614(03)00221-5
- Jeon, I.-S.; Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, B. Int. J. Quantum Chem. 2005, 101, 55. https://doi.org/10.1002/qua.20269
- Lee, K.-M.; Park, S.-W.; Jeon, I.-S.; Lee, B.-R.; Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2005, 26, 909. https://doi.org/10.5012/bkcs.2005.26.6.909
- Ahn, D.-S.; Kang, A.-R.; Lee, S.; Kim, B.; Kim, S. K.; Neuhauser, D. J. Chem. Phys. 2005, 122, 084310. https://doi.org/10.1063/1.1850893
- Park, S.-W.; Im, S.; S. Lee.; Desfrançois, C. Int. J. Quantum Chem. 2007, 107, 1316. https://doi.org/10.1002/qua.21255
- Kim, J.-Y.; Im, S.; Kim, B.; Desfrancois, C.; Lee, S. Chem. Phys. Lett. 2008, 451, 198. https://doi.org/10.1016/j.cplett.2007.12.016
- Csaszar, A. G.; Perczel, A. Progr. Biophys. Mol. Biol. 1999, 71, 243. https://doi.org/10.1016/S0079-6107(98)00031-5
- Im, S.; Jang, S.-W.; Lee, S.; Lee, Y.; Kim, B. J. Phys. Chem. A 2008, 112, 9767. https://doi.org/10.1021/jp801933y
- Snoek, L. C.; Kroemer, R. T.; Hockridge, M. R.; Simons, J. P. Phys. Chem. Chem. Phys. 2001, 3, 1819 https://doi.org/10.1039/b101296g
- Kim, N. J.; Kang, H.; Jeong, G.; Kim, Y. S.; Lee, K. T.; Kim, S. K. J. Phys. Chem. A 2001, 104, 6552.
- Spinor, J.; Sulkes, M. J. Chem. Phys. 1993, 98, 9389. https://doi.org/10.1063/1.465084
- Gao, X.; Fischer, G. J. Phys. Chem. A 1999, 103, 4404 https://doi.org/10.1021/jp984457v
- Fernandez-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z. J. Chem. Phys. 2000, 113, 9714. https://doi.org/10.1063/1.1322084
- Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Phys. Chem. A 2005, 109, 1903. https://doi.org/10.1021/jp0466800
- Hu, C. H.; Shen, M.; Schafer III, H. F. J. Am. Chem. Soc. 1993, 115, 2923. https://doi.org/10.1021/ja00060a046
- Bandyopadhyay, P.; Gordon, M. S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2002, 116, 5023. https://doi.org/10.1063/1.1433503
- Julian, R. R.; Jarrold, M. F. J. Phys. Chem. A 2004, 108, 10861. https://doi.org/10.1021/jp047369l
- Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 8159. https://doi.org/10.1021/ja00136a013
- Albrecht, G.; Corey, R. B. J. Am. Chem. Soc. 1939, 61, 1087. https://doi.org/10.1021/ja01874a028
- Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett. 1992, 199, 261. https://doi.org/10.1016/0009-2614(92)80116-S
- Jonsson, P. G.; Kvick, A. Acta Crys. B 1972, 28, 1827. https://doi.org/10.1107/S0567740872005096
- Tortonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. Chem. Phys. Lett. 1996, 260, 21. https://doi.org/10.1016/0009-2614(96)00839-1
- Majumdar, D.; Guha, S. J. Mol. Struct. 1988, 180, 125. https://doi.org/10.1016/0166-1280(88)80084-8
- Ramek, M.; Nagy, P. I. J. Phys. Chem. A 2000, 104, 6844. https://doi.org/10.1021/jp000628w
- Lorenzini, M. L.; Bruno-Blanch, L.; Estiu, G. L. J. Mol. Struct. 1998, 454, 1. https://doi.org/10.1016/S0166-1280(98)00138-9
- Lorenzini, M. L.; Bruno-Blanch, L.; Estiu, G. L. Int. J. Quantum Chem. 1998, 70, 1195. https://doi.org/10.1002/(SICI)1097-461X(1998)70:6<1195::AID-QUA9>3.0.CO;2-V
- Crittenden, D. L.; Chebib, M.; Jordan, M. J. T. J. Phys. Chem. A 2004, 108, 203. https://doi.org/10.1021/jp036700i
- Lee, C.; Yang, W.; Parr, R. P. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. Pittsburgh, PA, 2003. 餎 돀邰ಗ⨀ 塨?⨀
Cited by
- Microsolvation of Lysine by Water: Computational Study of Stabilized Zwitterion vol.115, pp.33, 2011, https://doi.org/10.1021/jp202850s
- Proton Transfer in Biomolecules Facilitated by Water: Quantum Chemical Investigations vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1117
- Antioxidant Activity and Protective Effects of Uncaria rhynchophylla Extracts on t-BHP-induced Oxidative Stress in Chang Cells vol.17, pp.6, 2010, https://doi.org/10.1007/s12257-012-0278-9
- Effects of Microsolvation on the Stability of Zwitterionic Valine vol.33, pp.11, 2012, https://doi.org/10.5012/bkcs.2012.33.11.3797