DOI QR코드

DOI QR Code

Structure and Stability of γ-Aminobutyric acid-(H2O)n (n = 0-5) Clusters: Zwitterionic vs. Canonical forms

  • Kim, Ju-Young (Department of Applied Chemistry, Kyung Hee University) ;
  • Schermann, Jean Pierre (Department of Biophysics and Biochemical Chemistry, WCU, Seoul National University) ;
  • Lee, Sung-Yul (Department of Applied Chemistry, Kyung Hee University)
  • Published : 2010.01.20

Abstract

Calculations are presented for the $\gamma$-aminobutyric acid-$(H_2O)_n$ (n = 0-5) clusters in both canonical and zwitterionic forms. We examine the effects of microsolvation on the structures and transformation between the canonical and zwitterionic forms. The canonical forms are predicted to be more stable for n = 0-4. With five microsolvating water molecules, the two forms of $\gamma$-aminobutyric acid become quasidegenerate, with the energies of zwitterionic forms slightly (by 1 - 3 kcal/mol) higher. The lowest energy zwitterionic conformer of $\gamma$-aminobutyric acid-$(H_2O)_5$ cluster is calculated to isomerize to canonical form through a barrier-less proton transfer process and is thus predicted to be kinetically unstable. Therefore, we predict that the canonical conformers of $\gamma$-aminobutyric acid should be observed predominantly in the gas phase at low temperature in presence of up to five water molecules.

Keywords

References

  1. Wyttenbach, T.; Witt, M.; Bowers, M. T. J. Am. Chem. Soc. 2000, 122, 3458. https://doi.org/10.1021/ja992546v
  2. Skurski, P.; Gutowski, M.; Barrios, R.; Simons, J. Chem. Phys. Lett. 2001, 337, 143. https://doi.org/10.1016/S0009-2614(01)00166-X
  3. Blom, M. N.; Compagnon, I.; Polfer, N. C.; Helden, G. V.; Meijer, G.; Suhai, S. S.; Paizs, B. B.; Oomens, J. J. Phys. Chem. A 2007, 111, 7309. https://doi.org/10.1021/jp070211r
  4. Xu, S.; Nilles, J. M.; Bowen, K. H. J. Chem. Phys. 2003, 119, 10696. https://doi.org/10.1063/1.1620501
  5. Aikens, C. M.; Gordon, M. S. J. Amer. Chem. Soc. 2006, 128, 12835. https://doi.org/10.1021/ja062842p
  6. Desfrançois, C.; Carles, S.; Schermann, J. P. Chem. Rev. 2000, 100, 3943. https://doi.org/10.1021/cr990061j
  7. Zwier, T. S. J. Phys. Chem. A 2001, 105, 8827. https://doi.org/10.1021/jp011659+
  8. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee , S. J. Phys. Chem. B 2003, 107, 14109. https://doi.org/10.1021/jp031041v
  9. Park, S.-W.; Ahn, D.-S.; Lee, S. Chem. Phys. Lett. 2003, 371, 74. https://doi.org/10.1016/S0009-2614(03)00221-5
  10. Jeon, I.-S.; Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, B. Int. J. Quantum Chem. 2005, 101, 55. https://doi.org/10.1002/qua.20269
  11. Lee, K.-M.; Park, S.-W.; Jeon, I.-S.; Lee, B.-R.; Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2005, 26, 909. https://doi.org/10.5012/bkcs.2005.26.6.909
  12. Ahn, D.-S.; Kang, A.-R.; Lee, S.; Kim, B.; Kim, S. K.; Neuhauser, D. J. Chem. Phys. 2005, 122, 084310. https://doi.org/10.1063/1.1850893
  13. Park, S.-W.; Im, S.; S. Lee.; Desfrançois, C. Int. J. Quantum Chem. 2007, 107, 1316. https://doi.org/10.1002/qua.21255
  14. Kim, J.-Y.; Im, S.; Kim, B.; Desfrancois, C.; Lee, S. Chem. Phys. Lett. 2008, 451, 198. https://doi.org/10.1016/j.cplett.2007.12.016
  15. Csaszar, A. G.; Perczel, A. Progr. Biophys. Mol. Biol. 1999, 71, 243. https://doi.org/10.1016/S0079-6107(98)00031-5
  16. Im, S.; Jang, S.-W.; Lee, S.; Lee, Y.; Kim, B. J. Phys. Chem. A 2008, 112, 9767. https://doi.org/10.1021/jp801933y
  17. Snoek, L. C.; Kroemer, R. T.; Hockridge, M. R.; Simons, J. P. Phys. Chem. Chem. Phys. 2001, 3, 1819 https://doi.org/10.1039/b101296g
  18. Kim, N. J.; Kang, H.; Jeong, G.; Kim, Y. S.; Lee, K. T.; Kim, S. K. J. Phys. Chem. A 2001, 104, 6552.
  19. Spinor, J.; Sulkes, M. J. Chem. Phys. 1993, 98, 9389. https://doi.org/10.1063/1.465084
  20. Gao, X.; Fischer, G. J. Phys. Chem. A 1999, 103, 4404 https://doi.org/10.1021/jp984457v
  21. Fernandez-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z. J. Chem. Phys. 2000, 113, 9714. https://doi.org/10.1063/1.1322084
  22. Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Phys. Chem. A 2005, 109, 1903. https://doi.org/10.1021/jp0466800
  23. Hu, C. H.; Shen, M.; Schafer III, H. F. J. Am. Chem. Soc. 1993, 115, 2923. https://doi.org/10.1021/ja00060a046
  24. Bandyopadhyay, P.; Gordon, M. S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2002, 116, 5023. https://doi.org/10.1063/1.1433503
  25. Julian, R. R.; Jarrold, M. F. J. Phys. Chem. A 2004, 108, 10861. https://doi.org/10.1021/jp047369l
  26. Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 8159. https://doi.org/10.1021/ja00136a013
  27. Albrecht, G.; Corey, R. B. J. Am. Chem. Soc. 1939, 61, 1087. https://doi.org/10.1021/ja01874a028
  28. Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett. 1992, 199, 261. https://doi.org/10.1016/0009-2614(92)80116-S
  29. Jonsson, P. G.; Kvick, A. Acta Crys. B 1972, 28, 1827. https://doi.org/10.1107/S0567740872005096
  30. Tortonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. Chem. Phys. Lett. 1996, 260, 21. https://doi.org/10.1016/0009-2614(96)00839-1
  31. Majumdar, D.; Guha, S. J. Mol. Struct. 1988, 180, 125. https://doi.org/10.1016/0166-1280(88)80084-8
  32. Ramek, M.; Nagy, P. I. J. Phys. Chem. A 2000, 104, 6844. https://doi.org/10.1021/jp000628w
  33. Lorenzini, M. L.; Bruno-Blanch, L.; Estiu, G. L. J. Mol. Struct. 1998, 454, 1. https://doi.org/10.1016/S0166-1280(98)00138-9
  34. Lorenzini, M. L.; Bruno-Blanch, L.; Estiu, G. L. Int. J. Quantum Chem. 1998, 70, 1195. https://doi.org/10.1002/(SICI)1097-461X(1998)70:6<1195::AID-QUA9>3.0.CO;2-V
  35. Crittenden, D. L.; Chebib, M.; Jordan, M. J. T. J. Phys. Chem. A 2004, 108, 203. https://doi.org/10.1021/jp036700i
  36. Lee, C.; Yang, W.; Parr, R. P. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  37. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. Pittsburgh, PA, 2003.餎돀邰ಗ⨀塨?⨀

Cited by

  1. Microsolvation of Lysine by Water: Computational Study of Stabilized Zwitterion vol.115, pp.33, 2011, https://doi.org/10.1021/jp202850s
  2. Proton Transfer in Biomolecules Facilitated by Water: Quantum Chemical Investigations vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1117
  3. Antioxidant Activity and Protective Effects of Uncaria rhynchophylla Extracts on t-BHP-induced Oxidative Stress in Chang Cells vol.17, pp.6, 2010, https://doi.org/10.1007/s12257-012-0278-9
  4. Effects of Microsolvation on the Stability of Zwitterionic Valine vol.33, pp.11, 2012, https://doi.org/10.5012/bkcs.2012.33.11.3797