• Title/Summary/Keyword: Zwitterion

Search Result 26, Processing Time 0.019 seconds

Determination of the Proton Transfer Energies of Glycine and Alanine and the Influence of Water Molecules

  • Gwon, O Yeong;Kim, Su Yeon;No, Gyeong Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.410-416
    • /
    • 1995
  • The proton transfer energies of gas phase glycine and alanine and those of hydrated glycine and alanine were calculated both with Hartree-Fock and $M{\Phi}ller-Plesset$ ab initio molecular orbital (MO) calculations with 6-31G** basis set. The transition states of the proton transfer of gas phase glycine was also investigated. For zwitterions, both for glycine and alanine, the water bound to -NH3+ site stabilize the complex more compared with the water bound to -CO2-. The proton transfer energy, ΔEpt, of glycine, alanine, mono-hydrated glycine, mono-hydrated alanine, di-hydrated glycine and di-hydrated alanine were obtained as 30.78 (MP2: 22.57), 31.43, 23.99 (MP2: 17.00), 24.98, 22.87, and 25.63 kcal/mol, respectively. The activation energy for proton transfer from neutral (Nt) glycine to zwitterion (Zw) glycine, Ea, was obtained as 16.13 kcal/mol and that for reverse process, Ear, was obtained as 0.85 kcal/mol. Since the transition state of the proton transfer of gas phase glycine locate near the glycine zwitterion on the potential energy surface and the shape of the potential well of the zwitterion is shallow, the zwitterion easily changed to neutral glycine through the proton transfer.

Effects of Microsolvating Water on the Stability of Zwitterionic vs. Canonical Diglycine

  • Kim, Ju-Young;Won, Gang-Yeon;Lee, Sungyul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.798-804
    • /
    • 2014
  • We present calculations for diglycine - $(H_2O)_n$ (n = 0-3) to examine the effects of microsolvating water on the relative stability of the zwitterionic vs. canonical forms of the dipeptide. We calculate the structures, energies and Gibbs free energies of the conformers at wB97XD/6-311++G** and MP2/aug-cc-pvdz levels of theory level of theory. We predict that microsolvation by up to three water molecules does not give thermodynamic stability of the zwitterion relative to the canonical forms. Our calculations also suggest that zwitterionic diglycine - $(H_2O)_3$ is not stable kinetically in low temperature gas phase environment.

Kinetic Study on Absorption of Carbonyl Sulfide in Aqueous Monoethanolamine

  • Park, Moon-Ki;Moon, Yung-Soo;Suh, Dong-Soo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.195-200
    • /
    • 2000
  • The kinetics of the reaction between carbonyl sulfide and aqueous monoethanolamine were studied over a range of temperature (298-348 K) and amine concentrations using a wetted-sphere absorber. The key physicochemical properties used to interpret the data included the solubility and diffusivity of the COS in the aqueous amine solution. The experimental data were interpreted using a zwitterion mechanism, which produced an Arrhenius plot with third-order kinetic rate constants. The fit of these data was $K_3$=$1.32\times10(sup)10exp(\frac{-6136}{T}}$

  • PDF

Effect of Nitrile-Functionalized Zwitterions on Electrochemical Properties of Electrolytes for Use in Lithium-ion Batteries

  • Lee, Bum-Jin;Kwak, Seung-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • This study examined the utility of two zwitterions, nitrile-functionalized zwitterions and a zwitterion without a nitrile group (MF-ZI), were used as additives along with 1 M $LiPF_6$ in ethylene carbonate (EC):diethylene carbonate (DEC) (3:7 V/V) (E-0) to form an electrolyte solution for use in lithium ion batteries comprising graphite and $LiCoO_2$ electrodes. The presence of NF-ZI (E-NF-ZI) in the electrolyte produced an ion conductivity comparable to that of E-0 and higher than that of an electrolyte containing MF-ZI (E-MF-ZI). Linear sweep voltammetry data revealed that the intensity of the E-NF-ZI reduction peak was lower than that of E-0. Furthermore, the successful formation of an SEI layer in the E-NF-ZI over graphite was confirmed by cyclic voltammetry data. These results were attributed to the adsorption of NF-ZI on the electrode surface, as verified by differential capacity measurements.

  • PDF

Ozone Oxidation of Trans-3-hexene with/without Pyridine (Pyridine 존재여부에 따른 Trans-3-hexene의 오존 산화 반응)

  • Kim, Chul G.;Hong, Won P.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.579-587
    • /
    • 1992
  • It was explored, whether the usual course of the ozonolysis of olefins can be modified with the help of pyridine. In the First step, the ozone oxidation of trans-3-hexene was performed with and without pyridine in the inert solvents n-pentane and dichloromethane. In addition, base catalyzed decompositions of monomeric and polymeric ozonides were also examined to identify the reaction mechanism. The reaction products were identified by modern analytical tools. The results of this work showed that reactions of ozone with olefins in the absence of pyridine in aprotic solvents gave, one hand, dominantly peroxidic products, namely monomeric and polymeric ozonides. The other hand, they in the presence of pyridine gave only the non-peroxidic products, namely propionaldehyde and rearranged propionic acid without peroxidic products. It seems, also, that the pyridine-catalyzed isomerization of the Criegee zwitterion of trans-3-hexene to give propionic acid takes place in the ozone oxidation of trans-3-hexene.

  • PDF

Organic Solvents Containing Zwitterion as Electrolyte for Li Ion Cells

  • Krishnan, Jegatha Nambi;Kim, Hyung-Sun;Lee, Jae-Kyun;Cho, Byung-Won;Roh, Eun-Joo;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1705-1710
    • /
    • 2008
  • Imidazolium based zwitterions, 1,2-dimethylimidazolium-3-n-propanesulfonate (DMIm-3S) and 1-Butylimidazolium-3-n-butanesulphonate (BIm-4S), were synthesized, and utilized them as additive for Li ion cell comprising of graphite anode and $LiCoO_2$ cathode. The use of 10 wt% of DMIm-3S in 1 M $LiPF_6$, EC-EMCDMC (1:1:1 (v/v)) resulted in the increased high rate charge-discharge performance. The low temperature performance of the Li ion cells at about −20 ${^{\circ}C}$ was also enhanced by these zwitterion additives. The DMIm- 3S additive resulted in the better capacity retention by the Li-ion cells even after 120 cycles with 100% depth of discharge (DOD) at 1 C rate in room temperature. Surface morphology of both graphite and $LiCoO_2$ electrode before and after 300 cycles was studied by scanning electron microscopy. An analogous study was performed using liquid electrolyte without any additive.

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

CONCENTRATION DEPENDENCES OF GROUND-STATE AND EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER OF PIROXICAM IN METHANOL

  • Cho, Dae-Won;Kang, Seong-Gwan;Kim, Yong-Hee;Yoon, Min-Joong;Kim, Dong-Ho
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.15-23
    • /
    • 1994
  • The absorption and fluorescence spectral properties of piroxicam (PRX) in the hydrogenbonding solvents show the most sensitive dependence on the concentration ranging from 8 x 10$^{_5}$ to 2 x10$^{_5}$ M. These are attributed to both the solvent-mediated ground-state intermolecular proton transfer (GSIerPT) leading to formation of the ground state anion and the excited-state intmmolecular proton transfer (ESIraPT). The concentration dependences of the time-resolved emission kinetics at both room temperature and 77 K have also been investigated. It is shown that in the excited state, the ESIraPT of PRX is the dominant process to form a keto tautomer at the high concentration, whereas at the low concentration the excited-state conformational change of the anion is an additional process leading to formation of a zwitterion. The ESI~PT of PRX in the hydrogenbonding solvent is coupled with the ultrafast excited-state solvent reorganization.

  • PDF