References
- Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka,B. F.; Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548
- Xu, J.; Luan, Z.; He, H.; Zhou, W.; Kevan, L. Chem. Mater. 1998,10, 3690. https://doi.org/10.1021/cm980440d
- Kim, T. W.; Kleitz, F.; Paul, B.; Ryoo, R. J. Am. Chem. Soc. 2005,127, 7601. https://doi.org/10.1021/ja042601m
- Liu, X.; Wang, A.; Yang, X.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li,J. Chem. Mater. 2009, 21, 410. https://doi.org/10.1021/cm8027725
- Zhu, J.; Knya, Z.; Puntes, V. F.; Kiricsi, I.; Miao, C. X.; Ager, J.W.; Alivisatos, A. P. Langmuir 2003, 19, 4396. https://doi.org/10.1021/la0207421
- Rosenholm, J. M.; Linden, M. J. Controlled Release 2008, 128,157. https://doi.org/10.1016/j.jconrel.2008.02.013
- Liu, Y.; Zhang, J.; Hou, W.; Zhu, J. J. Nanotechnology 2008, 19,135707. https://doi.org/10.1088/0957-4484/19/13/135707
- Vinu, A.; Hossain, K. Z.; Ariga, K. J. Nanosci. Nanotechnol. 2005,5, 347. https://doi.org/10.1166/jnn.2005.089
- Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2000, 15,2161.
- Walcarius, A.; Etienne, M.; Sayen, S.; Lebeau, B. Electroanalysis2003, 15, 414. https://doi.org/10.1002/elan.200390048
- Wan, Y.; Zhang, D.; Hao, N.; Zhao, D. Int. J. Nanotechnol. 2007,4, 66. https://doi.org/10.1504/IJNT.2007.012316
- Bhagiyalakshmi, M.; Yun, L. J.; Anuradha, R.; Jang, H. T. J.Hazard. Mater. 2010, 175, 928. https://doi.org/10.1016/j.jhazmat.2009.10.097
- Brunel, D. Micropor. Mesopor. Mater. 1999, 27, 329. https://doi.org/10.1016/S1387-1811(98)00266-2
- Yang, W.; Yang, S.; Sun, W.; Sun, G.; Xin, Q. Electrochim. Acta2006, 52, 9. https://doi.org/10.1016/j.electacta.2006.03.066
- Prater, D. N.; Rusek, J. J. Appl. Energy 2003, 74, 135. https://doi.org/10.1016/S0306-2619(02)00139-3
- Miley, G. H.; Luo, N.; Mather, J.; Burton, R.; Hawkins, G.; Gu, L.;Byrd, E.; Gimlin, R.; Shrestha, P. J.; Benavides, G.; Laystrom, J.;Carroll, D. J. Power Sources 2007, 165, 509. https://doi.org/10.1016/j.jpowsour.2006.10.062
- Matsubara, C.; Kawamoto, N.; Takamura, K. Analyst 1992, 117, 1781. https://doi.org/10.1039/an9921701781
- Li, J.; Dasgupta, P. K. Anal. Chem. 2000, 72, 5338. https://doi.org/10.1021/ac000611+
- Song, Y.; Wang, L.; Ren, C.; Zhua, G.; Li, Z. Sensor Actuat B-Chem.2006, 114, 1001. https://doi.org/10.1016/j.snb.2005.07.061
- vanVenrooij, T. G. J.; Koper, M. T. M. Electrochim. Acta 1995, 40,1689. https://doi.org/10.1016/0013-4686(95)00029-E
- Yang, W.; Yang, S.; Sun, W.; Sun, G.; Xin, Q. Electrochim. Acta2006, 52, 9. https://doi.org/10.1016/j.electacta.2006.03.066
- Strbac, S.; Adzic, R. R. J. Electroanal. Chem. 1992, 337, 355. https://doi.org/10.1016/0022-0728(92)80549-J
- Flatgen, G.; Wasle, S.; Lubke, M.; Eickes, C.; Radhakrishnan, G.;Ertl, G. Electrochim. Acta 1999, 44, 4499. https://doi.org/10.1016/S0013-4686(99)00184-X
- Lin, D. H.; Jiang, Y. X.; Wang, Y. J. Nanomater. 2008, 473791.
- Zhao, Y.; Qi, Y.; Wei, Y.; Zhang, Y.; Zhang, S.; Yang, Y.; Liu, Z.Micropor. Mesopor. Mater. 2008, 111, 300. https://doi.org/10.1016/j.micromeso.2007.08.004
- Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. Y. S. J. Phys. Chem. B 2005,109, 6287. https://doi.org/10.1021/jp045634x
- Neimark, A. V.; Ravikovitch, P. I.; Grün, M.; Schüth, F.; Unger, K.K. J. Colloid Interface Sci. 1998, 207, 159. https://doi.org/10.1006/jcis.1998.5748
- Selvaraj, V.; Alagar, M. J. Bionanoscience 2008, 2, 54. https://doi.org/10.1166/jbns.2008.027
- Wang, S. T.; Yan, J. C. Mater. Lett. 2005, 59, 1383. https://doi.org/10.1016/j.matlet.2004.12.045
- Delvaux, M.; Walcarius, A.; Demoustier-Champagne, S. Anal.Chim. Acta 2004, 525, 221. https://doi.org/10.1016/j.aca.2004.08.054
- Pirault-Roy, L.; Kappenstein, C.; Guerin, M.; Eloirdi, R. J. PropulsionPower 2002, 18, 1235. https://doi.org/10.2514/2.6058
Cited by
- by Human Carbonic Anhydrase Covalently Immobilized onto Amine-Functionalized SBA-15 vol.115, pp.41, 2011, https://doi.org/10.1021/jp204661v
- vol.27, pp.10, 2011, https://doi.org/10.1021/la105029h
- Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing vol.15, pp.10, 2013, https://doi.org/10.1007/s11051-013-1971-0
- Mesoporous materials and electrochemistry vol.42, pp.9, 2013, https://doi.org/10.1039/c2cs35322a
- Voltammetric behaviour of hydrogen peroxide at a silver electrode fabricated from a rewritable digital versatile disc (DVD) and its determination in water samples vol.5, pp.23, 2013, https://doi.org/10.1039/c3ay41557k
- H) vol.60, pp.5, 2013, https://doi.org/10.1002/jccs.201200530
- vol.31, pp.12, 2013, https://doi.org/10.1002/cjoc.201300487
- Polymer Nanofibers Incorporated with Silver Nanoparticles: Thermal Properties vol.39, pp.11, 2018, https://doi.org/10.1007/s10765-018-2446-4
- Carbonic anhydrase conjugated to nanosilver immobilized onto mesoporous SBA-15 for sequestration of CO2 vol.75, pp.None, 2010, https://doi.org/10.1016/j.molcatb.2011.11.010
- Catalytic application of silver nanoparticles immobilized to rice husk-SiO2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes vol.41, pp.None, 2010, https://doi.org/10.1016/j.catcom.2013.06.020
- The Synergistic Character of Highly N‐Doped Coconut-Shell Activated Carbon for Efficient CO 2 Capture vol.6, pp.34, 2010, https://doi.org/10.1002/slct.202102522