DOI QR코드

DOI QR Code

Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol

  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Kang, Ji-Sun (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Im, Li-Ra (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.08.16
  • Accepted : 2010.09.18
  • Published : 2010.12.20

Abstract

A kinetic study on nucleophilic displacement reactions of 2-pyridyl X-substituted benzoates 1a-e with potassium ethoxide (EtOK) in anhydrous ethanol is reported. Plots of pseudo-first-order rate constants ($k_{obsd}$) vs. $[EtOK]_o$ exhibit upward curvature. The $k_{obsd}$ value at a fixed $[EtOK]_o$ decreases steeply upon addition of 18-crown-6-ether (18C6) to the reaction mixture up to [18C6]/$[EtOK]_o$ = 1 and then remains nearly constant thereafter. In contrast, $k_{obsd}$ increases sharply upon addition of LiSCN or KSCN. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ has revealed that ion-paired EtOK is more reactive than dissociated $EtO^-$, indicating that $K^+$ ion acts as a Lewis acid catalyst. Hammett plots for the reactions of 1a-e with dissociated $EtO^-$ and ion-paired EtOK result in excellent linear correlation with $\rho$ values of 3.01 and 2.67, respectively. The $k_{EtOK}/k_{EtO^-}$ ratio increases as the substituent X in the benzoyl moiety becomes a stronger electron-donating group. $K^+$ ion has been concluded to catalyze the current reaction by stabilizing the transition state through formation of a 6-membered cyclic complex.

Keywords

References

  1. Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry;University Science Books: Sausalito, USA, 2006; pp 500-502.
  2. Carroll, F. A. Perspectives on Structure and Mechanismin Organic Chemistry; Brooks/Cole: New York, USA, 1998; p 445.
  3. Page, M. I.; Williams, A. Organic & Bioorganic Mechanisms;Longman: Singapore, 1997; pp 179-183.
  4. Da Silva, J. J. R.Frausto.; Williams, R. J. P. The Biological Chemistry of the Elements;Clarendon Press: Oxford, 1991.
  5. Stryer, L. Biochemistry;W. H. Freeman and company: New York, 1988.
  6. Fersht, A. EnzymeStructure and Mechanism; W. H. Freeman and company: NewYork, 1985.
  7. Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
  8. Davies, A. G. Perkin 1 2000, 1997-2010.
  9. Williams,N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32,485-493. https://doi.org/10.1021/ar9500877
  10. Suh, J. Acc. Chem. Res. 1992, 25, 273-279. https://doi.org/10.1021/ar00019a001
  11. Thatcher,G. R. J.; Kluger, R. Adv. Phys. Org. Chem. 1989, 25, 99-265. https://doi.org/10.1016/S0065-3160(08)60019-2
  12. Breslow, R. Adv. Enzymol. 1986, 58, 1-60.
  13. Chin, J. Acc.Chem. Res. 1991, 24, 145-152. https://doi.org/10.1021/ar00005a004
  14. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
  15. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
  16. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
  17. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37,4872-4877. https://doi.org/10.1021/ic980205x
  18. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem.Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
  19. Liu, C. T.; Neverov, A. A.; Maxwell, C. I.; Brown, R. S. J. Am.Chem. Soc. 2010, 132, 3561-3573. https://doi.org/10.1021/ja910111q
  20. Edwards, D. R.; Tsang, W.Y.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2010, 84,822-827.
  21. Brown, R. S.; Lu, Z, L.; Liu, C. T.; Tsang, W. Y.;Edwards, D. R.; Neverov, A. A. J. Phys. Org. Chem. 2010, 23,1-15.
  22. Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg.Chem. 2009, 48, 11425-11433. https://doi.org/10.1021/ic9015965
  23. Gibson, G. T. T.; Mohamed, M.F.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2006, 45, 7891-7902. https://doi.org/10.1021/ic060517x
  24. Gibson, G. T. T.; Neverov, A. A.; Teng, A. C.-T.; Brown,R. S. Can. J. Chem. 2005, 83, 1268-1276. https://doi.org/10.1139/v05-065
  25. Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.;Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
  26. Dunn, E. J.;Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
  27. Buncel, E.;Dunn, E. J.; Bannard, R. B.; Purdon, J. G. Chem. Commun. 1984,162-163.
  28. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439. https://doi.org/10.1139/V08-178
  29. Buncel, E.;Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475. https://doi.org/10.1039/b501537e
  30. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem.2004, 2, 601-610. https://doi.org/10.1039/b314886f
  31. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E.Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  32. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem.2003, 81, 53-63. https://doi.org/10.1139/v02-202
  33. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am.Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  34. Pregel, M. J.; Buncel, E. J.Org. Chem. 1991, 56, 5583-5588. https://doi.org/10.1021/jo00019a022
  35. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org.Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  36. Um, I. H.; Jeon, S. E.; Baek, M. H.;Park, H. R. Chem. Commun. 2003, 3016-3017.
  37. Hong, Y. J.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010,31, 2483-2487. https://doi.org/10.5012/bkcs.2010.31.9.2483
  38. Seo, J. A.; Kim, S. I.; Hong, Y. J.; Um, I. H. Bull.Korean Chem. Soc. 2010, 31, 303-308. https://doi.org/10.5012/bkcs.2010.31.02.303
  39. Um, I. H.; Lee, S. E.;Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 1295-1296. https://doi.org/10.5012/bkcs.2008.29.7.1295
  40. Um,I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E. Bull. Korean Chem. Soc.2008, 29, 117-121. https://doi.org/10.5012/bkcs.2008.29.1.117
  41. Mentz, M.; Modro, A. M.; Modro, T. A. Can. J. Chem. 1994, 72,1933-1936. https://doi.org/10.1139/v94-246
  42. Mentz, M.; Modro, T. A. J. Chem. Soc. PerkinTrans. 2 1995, 2227-2229.
  43. Albanese, D.; Landini, D.; Maia, A.J. Org. Chem. 2001, 66, 3249-3252. https://doi.org/10.1021/jo0056388
  44. Paola, G. T.; Idania, V. Z.;Olga, T.; Yatsimirsky, A. K. J. Org. Chem. 2006, 71, 9713-9722. https://doi.org/10.1021/jo061780i
  45. Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H.; Bull. Korean Chem.Soc. 2010, 31, in press.
  46. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  47. Lee, J.I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  48. Kim, Sunggak.;Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  49. Kim, Sunggak.;Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  50. Kim, Sunggak.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-1716. https://doi.org/10.1021/jo00163a040
  51. Mukaiyama, T.; Araki, M.; Takei, H. J. Amer. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  52. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T.Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  53. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Phys.Org. Chem. 2006, 19, 555-561. https://doi.org/10.1002/poc.1055
  54. Campodonico, P. R.; Fuentealba,P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem.2005, 70, 1754-1760. https://doi.org/10.1021/jo048127k
  55. Castro, E. A.; Vivanco, M.; Aguayo, R.;Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. https://doi.org/10.1021/jo049260f
  56. Castro, E. A.;Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org.Chem. 2004, 69, 2411-2416. https://doi.org/10.1021/jo035451r
  57. Oh, H. K.; Lee, J. M.; Lee, H. W.;Lee, I. Int. J. Chem. 2004, 36, 434-440.
  58. Castro, E. A.; Galvez,A.; Leandro, L.; Santos, J. G. J. Org. Chem. 2002, 67, 4309-4315. https://doi.org/10.1021/jo025562a
  59. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002,67, 8995-8998. https://doi.org/10.1021/jo0264269
  60. Oh, H. K.; Ku, M.g H.; Lee, H. W.; Lee, I. J.Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  61. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org.Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  62. Um, I. H.; Yoon, S. R.; Park, H. R.;Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  63. Um, I. H.;Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  64. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org.Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  65. Um, I. H.; Seok, J. A.; Kim, H.T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  66. Um, I. H.;Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  67. Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry;University Science Books: Sausalito, USA, 2006; p 227.
  68. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun.1982, 47, 3405-3411 https://doi.org/10.1135/cccc19823405
  69. Barthel, J.; Justice, J-C.; Wachter, R. Z. Phys. Chem. 1973, 84,100-113. https://doi.org/10.1524/zpch.1973.84.1-4.100
  70. Buncel, E.; Chuaqui, C.; Wilson, H. J. Org. Chem. 1980, 45,3621-3626. https://doi.org/10.1021/jo01306a016
  71. Johnson, C. D. Chem. Rev. 1975, 75, 755-756. https://doi.org/10.1021/cr60298a004
  72. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69-132. https://doi.org/10.1016/S0065-3160(08)60108-2
  73. Ritchie, C.D. Acc. Chem. Res. 1972, 5, 348-354. https://doi.org/10.1021/ar50058a005
  74. McLennan, D. J. Aust. J.Chem. 1978, 31, 1897-1909. https://doi.org/10.1071/CH9781897
  75. Young, P. R.; Jencks, W. P. J. Am.Chem. Soc. 1979, 101, 3288-3294. https://doi.org/10.1021/ja00506a025

Cited by

  1. Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1951
  2. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  3. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
  4. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  5. Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1525
  6. Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 3,4-Dinitrophenyl Diphenylphosphinothioate with Alkali Metal Ethoxides in Anhydrous Ethanol: Effect of Changing Elec vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2423
  7. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2010, https://doi.org/10.5012/bkcs.2012.33.7.2269
  8. Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism vol.33, pp.8, 2010, https://doi.org/10.5012/bkcs.2012.33.8.2719