References
- C. A. Mark, “The new, new limits of optical lithography,” Proc. SPIE 5374, 1-8 (2004). https://doi.org/10.1117/12.546201
- A. A. Milner, K. Zhang, and Y. Prior, “Floating tip nanolithography,” Nano Lett. 8, 2017-2022 (2008). https://doi.org/10.1021/nl801203c
- S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4, 1381-1384 (2004). https://doi.org/10.1021/nl049540a
- Y. Wang, X. Liang, Y. Liang, and S. Y. Chou, “Sub-10-nm wide trench, line, and hole fabrication using pressed self-perfection,” Nano Lett. 8, 1986-1990 (2008). https://doi.org/10.1021/nl801030c
- F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321, 1658-1660 (2008). https://doi.org/10.1126/science.1162193
- M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999). https://doi.org/10.1063/1.125388
- G. J. Leggett, “Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35, 1150-1161 (2006). https://doi.org/10.1039/b606706a
- W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733-737 (2008). https://doi.org/10.1038/nnano.2008.303
- Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17, 19476-19485 (2009). https://doi.org/10.1364/OE.17.019476
- M. Naya, I. Tsuruma, T. Tani, and A. Mukai, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005). https://doi.org/10.1063/1.1931056
- T. Ito, M. Ogino, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100 nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol. 18, 435-441 (2005). https://doi.org/10.2494/photopolymer.18.435
- M. Toukhy, M. Paunescu, Z. Bogusz, and G. Pawlowski, “Chemically amplified hybrid resist platform for i-line applications,” Proc. SPIE 7273, 72730J (2009).
- M. Cheng, E. Croffie, L. Yuan, and A. Neureuther, “Enhancement of resist resolution and sensitivity via applied electric field,” J. Vac. Sci. Technol. B 18, 3318-3322 (2000). https://doi.org/10.1116/1.1324646
- M. Cheng, L. Yuan, E. Croffie, and A. Neureuther, “Improving resist resolution and sensitivity via electric-field enhanced postexposure baking,” J. Vac. Sci. Technol. B 20, 734-740 (2002). https://doi.org/10.1116/1.1464835
- M. Cheng, J. Poppe, and A. Neureuther, “Effects of treatment parameters in electric-field-enhanced postexposure bake,” J. Vac. Sci. Technol. B 21, 1428-1432 (2003). https://doi.org/10.1116/1.1593055
- E. Lee and J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103, 083550 (2008). https://doi.org/10.1063/1.2907971
- E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19, 275303 (2008). https://doi.org/10.1088/0957-4484/19/27/275303
- E. Richter, S. Hien, and M. Sebald, “Novel diffusion analysis in advanced chemically amplified DUV resists using photometric methods,” J. Photopolym. Sci. Technol. 12, 695-710 (1999). https://doi.org/10.2494/photopolymer.12.695
- C. T. Lee, R. A. Lawson, and C. L. Henderson, “Understanding the effects of photoacid distribution homogeneity and diffusivity on critical dimension control and line edge roughness in chemically amplified resists,” J. Vac. Sci. Technol. B 26, 2276-2280 (2008). https://doi.org/10.1116/1.2976601
- E. Croffie, M. Cheng, A. Neureuther, R. Cirelli, F. Houlihan, J. Sweeney, P. Watson, O. Nalamasu, I. Rushkin, O. Dimov, and A. Gabor, “Overview of the STORM program application to 193nm single layer resists,” Microelectronic Engineering 53, 437-442 (2000). https://doi.org/10.1016/S0167-9317(00)00351-8
- F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22, 445-452 (1975). https://doi.org/10.1109/T-ED.1975.18159
- S. J. Bukofsky, G. D. Feke, Q. Wu, R. D. Grober, P. M. Dentinger, and J. W. Taylor, “Imaging of photogenerated acid in a chemically amplified photoresist,” Appl. Phys. Lett. 73, 408-410 (1998). https://doi.org/10.1063/1.121850
- J. B. Park, S. H. Kim, S. J. Kim, J. H. Cho, and H. K. Oh, “Acid diffusion length corresponding to post exposure bake time and temperature,” Jpn. J. Appl. Phys. 46, 28-30 (2007). https://doi.org/10.1143/JJAP.46.28
- W. Jost, Diffusion in Solid, Liquids, Gases, 3rd ed. (Academic Press, New York, USA, 1960), pp. 46-60, 139-143.
- T. Itani, H. Yoshino, S. Hashimoto, M. Yamana, N. Samoto, and K. Kasama, “A study of acid diffusion in chemically amplified deep ultraviolet resist,” J. Vac. Sci. Technol. B 14, 4226-4228 (1996). https://doi.org/10.1116/1.588580
- M. Zuniga and A. R. Neureuther, “Post exposure bake characterization and parameter extraction for positive deep-UV resists through broad-area exposure experiments,” Proc. SPIE 2724, 110-118 (1996). https://doi.org/10.1117/12.241810
- E. Richter, S. Hien, and M. Sebald, “Acid diffusion analysis in the chemically amplified CARL resist,” Microelectronic Engineering 53, 479-483 (2000). https://doi.org/10.1016/S0167-9317(00)00360-9