DOI QR코드

DOI QR Code

Near-field Optical Lithography for High-aspect-ratio Patterning by Using Electric Field Enhanced Postexposure Baking

전기장이 적용된 노광후굽기 공정에 의한 고종횡비 근접장 광 리소그래피

  • Kim, Seok (School of Mechanical Engineering, Yonsei University) ;
  • Jang, Jin-Hee (School of Mechanical Engineering, Yonsei University) ;
  • Kim, Yong-Woo (School of Mechanical Engineering, Yonsei University) ;
  • Jung, Ho-Won (School of Mechanical Engineering, Yonsei University) ;
  • Hahn, Jae-Won (School of Mechanical Engineering, Yonsei University)
  • 김석 (연세대학교 기계공학과) ;
  • 장진희 (연세대학교 기계공학과) ;
  • 김용우 (연세대학교 기계공학과) ;
  • 정호원 (연세대학교 기계공학과) ;
  • 한재원 (연세대학교 기계공학과)
  • Received : 2010.09.14
  • Accepted : 2010.10.19
  • Published : 2010.12.25

Abstract

In this paper, we propose an electric field enhanced postexposure baking (EFE-PEB) method to obtain deep and high aspect ratio pattern profile in near-field recording. To describe the photoacid distribution under an external electric field during the PEB, we derived the governing equations based on Fick's second law of diffusion. From the results of the numerical calculations, it is found that the vertical movement of photoacid increases while the lateral movement is stationary as electric field varies from 0 to $8.0{\times}10^6\;V/m$. Also, it is proven that the profile of near-field recording is improved by using the EFE-PEB method with increased depth, higher aspect ratio and larger sidewall angle.

본 논문에서는 근접장 패턴의 깊이와 종횡비(aspect ratio) 향상을 위해 전기장이 적용된 노광후굽기(electric field enhanced postexposure baking) 공정을 제안하였다. 전기장이 적용된 노광후굽기 공정 중 광산(photoacid) 분포를 기술하기 위하여 픽(Fick)의 확산 제 2법칙에 기반을 둔 지배방정식을 구성하였다. 수치해석(numerical calculation)을 통해 전기장의 세기가 0 에서 $8.0{\times}10^6\;V/m$ 로 증가함에 따라 광산의 수직적 이동거리가 늘어나는 것에 반해 수평적 이동거리는 거의 변화가 없음을 확인하였고, 이 때 근접장 패턴 형상을 얻었다. 이를 통해 근접장 패턴의 깊이, 종횡비, 패턴의 측벽 각(sidewall angle)이 향상됨을 알 수 있었다.

Keywords

References

  1. C. A. Mark, “The new, new limits of optical lithography,” Proc. SPIE 5374, 1-8 (2004). https://doi.org/10.1117/12.546201
  2. A. A. Milner, K. Zhang, and Y. Prior, “Floating tip nanolithography,” Nano Lett. 8, 2017-2022 (2008). https://doi.org/10.1021/nl801203c
  3. S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4, 1381-1384 (2004). https://doi.org/10.1021/nl049540a
  4. Y. Wang, X. Liang, Y. Liang, and S. Y. Chou, “Sub-10-nm wide trench, line, and hole fabrication using pressed self-perfection,” Nano Lett. 8, 1986-1990 (2008). https://doi.org/10.1021/nl801030c
  5. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321, 1658-1660 (2008). https://doi.org/10.1126/science.1162193
  6. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999). https://doi.org/10.1063/1.125388
  7. G. J. Leggett, “Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35, 1150-1161 (2006). https://doi.org/10.1039/b606706a
  8. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733-737 (2008). https://doi.org/10.1038/nnano.2008.303
  9. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17, 19476-19485 (2009). https://doi.org/10.1364/OE.17.019476
  10. M. Naya, I. Tsuruma, T. Tani, and A. Mukai, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005). https://doi.org/10.1063/1.1931056
  11. T. Ito, M. Ogino, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100 nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol. 18, 435-441 (2005). https://doi.org/10.2494/photopolymer.18.435
  12. M. Toukhy, M. Paunescu, Z. Bogusz, and G. Pawlowski, “Chemically amplified hybrid resist platform for i-line applications,” Proc. SPIE 7273, 72730J (2009).
  13. M. Cheng, E. Croffie, L. Yuan, and A. Neureuther, “Enhancement of resist resolution and sensitivity via applied electric field,” J. Vac. Sci. Technol. B 18, 3318-3322 (2000). https://doi.org/10.1116/1.1324646
  14. M. Cheng, L. Yuan, E. Croffie, and A. Neureuther, “Improving resist resolution and sensitivity via electric-field enhanced postexposure baking,” J. Vac. Sci. Technol. B 20, 734-740 (2002). https://doi.org/10.1116/1.1464835
  15. M. Cheng, J. Poppe, and A. Neureuther, “Effects of treatment parameters in electric-field-enhanced postexposure bake,” J. Vac. Sci. Technol. B 21, 1428-1432 (2003). https://doi.org/10.1116/1.1593055
  16. E. Lee and J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103, 083550 (2008). https://doi.org/10.1063/1.2907971
  17. E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19, 275303 (2008). https://doi.org/10.1088/0957-4484/19/27/275303
  18. E. Richter, S. Hien, and M. Sebald, “Novel diffusion analysis in advanced chemically amplified DUV resists using photometric methods,” J. Photopolym. Sci. Technol. 12, 695-710 (1999). https://doi.org/10.2494/photopolymer.12.695
  19. C. T. Lee, R. A. Lawson, and C. L. Henderson, “Understanding the effects of photoacid distribution homogeneity and diffusivity on critical dimension control and line edge roughness in chemically amplified resists,” J. Vac. Sci. Technol. B 26, 2276-2280 (2008). https://doi.org/10.1116/1.2976601
  20. E. Croffie, M. Cheng, A. Neureuther, R. Cirelli, F. Houlihan, J. Sweeney, P. Watson, O. Nalamasu, I. Rushkin, O. Dimov, and A. Gabor, “Overview of the STORM program application to 193nm single layer resists,” Microelectronic Engineering 53, 437-442 (2000). https://doi.org/10.1016/S0167-9317(00)00351-8
  21. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22, 445-452 (1975). https://doi.org/10.1109/T-ED.1975.18159
  22. S. J. Bukofsky, G. D. Feke, Q. Wu, R. D. Grober, P. M. Dentinger, and J. W. Taylor, “Imaging of photogenerated acid in a chemically amplified photoresist,” Appl. Phys. Lett. 73, 408-410 (1998). https://doi.org/10.1063/1.121850
  23. J. B. Park, S. H. Kim, S. J. Kim, J. H. Cho, and H. K. Oh, “Acid diffusion length corresponding to post exposure bake time and temperature,” Jpn. J. Appl. Phys. 46, 28-30 (2007). https://doi.org/10.1143/JJAP.46.28
  24. W. Jost, Diffusion in Solid, Liquids, Gases, 3rd ed. (Academic Press, New York, USA, 1960), pp. 46-60, 139-143.
  25. T. Itani, H. Yoshino, S. Hashimoto, M. Yamana, N. Samoto, and K. Kasama, “A study of acid diffusion in chemically amplified deep ultraviolet resist,” J. Vac. Sci. Technol. B 14, 4226-4228 (1996). https://doi.org/10.1116/1.588580
  26. M. Zuniga and A. R. Neureuther, “Post exposure bake characterization and parameter extraction for positive deep-UV resists through broad-area exposure experiments,” Proc. SPIE 2724, 110-118 (1996). https://doi.org/10.1117/12.241810
  27. E. Richter, S. Hien, and M. Sebald, “Acid diffusion analysis in the chemically amplified CARL resist,” Microelectronic Engineering 53, 479-483 (2000). https://doi.org/10.1016/S0167-9317(00)00360-9