DOI QR코드

DOI QR Code

Development of New Correlation and Assessment of Correlations for Two-Phase Pressure Drop in Rectangular Microchannels

사각 마이크로채널 내의 2 상 유동 압력강하 상관식의 검증 및 개발

  • Choi, Chi-Woong (POSTECH(Pohang University of Science and Technology)) ;
  • Yu, Dong-In (POSTECH(Pohang University of Science and Technology)) ;
  • Kim, Moo-Hwan (POSTECH(Pohang University of Science and Technology))
  • 최치웅 (포항공과대학교 기계공학과) ;
  • 유동인 (포항공과대학교 기계공학과) ;
  • 김무환 (포항공과대학교 기계공학과)
  • Published : 2010.01.01

Abstract

There are two kinds of models in two-phase pressured drop; homogeneous flow model and separated flow model. Many previous researchers have developed correlations for two-phase pressure drop in a microchannel. Most correlations were modified Lockhart and Martinelli's correlation, which was based on the separated flow model. In this study, experiments for adiabatic liquid water and nitrogen gas flow in rectangular microchannels were conducted to investigate two-phase pressure drop in the rectangular microchannels. Two-phase frictional pressure drop in the rectangular microchannels is highly related with flow regime. Homogeneous model with six two-phase viscosity models: $Owen^{(21)}$'s, $MacAdams^{(22)}$'s, Cicchitti et ${al.}^{(23)}$'s, Dukler et ${al.}^{(24)}$'s, Beattie and ${Whalley}^{(25)}$'s, Lin et ${al.}^{(26)}$'s models and six separated flow models: Lockhart and $Martinelli^{(27)}$'s, ${Chisholm}^{(31)}$'s, Zhang et ${al.,}^{(15)}$'s, Lee and ${Lee}^{(5)}$'s, Moriyama and ${Inue}^{(4)}$'s, Qu and $Mudawar^{(8)}$'s models were assessed with our experimental data. The best two-phase viscosity model is Beattie and Whalley's model. The best separated flow model is Qu and Mudawar's correlation. Flow regime dependency in both homogeneous and separated flow models was observed. Therefore, new flow pattern based correlations for both homogeneous and separated flow models were individually proposed.

2 상 유동 압력강하에 대한 모델은 균질유동모델과 분리유동모델 두 가지가 있다. 많은 선행 연구자들은 마이크로채널에서의 2 상 유동 압력강하에 대한 상관식을 제시하였고, 대부분은 분리유동모델에 해당하는 Lockhart- $Martinelli^{(27)}$의 수정된 상관식에 기초하고 있다. 본 연구에서는 사각 마이크로채널에서의 압력강하에 대한 연구를 위해서 액상의 물과 기상의 질소를 사용하여 사각 마이크로채널에서의 실험을 수행하였다. 2 상 마찰 압력강하는 2 상 유동양식에 큰 연관성을 가지고 있는 결과를 확인할 수 있었다. 6 가지의 2 상 점성 모델을 포함한 균질유동 모델 ($Owen^{(21)}$'s, $MacAdams^{(22)}$'s, Cicchitti et ${al.}^{(23)}$'s, ${al.,}^{(24)}$ Beattie and ${Whalley,}^{(25)}$ Lin et ${al.}^{(26)}$)과 6 가지의 분리유동 모델 (Lockhart and $Martinelli,^{(27)}$ ${Chisholm,}^{(31)}$ Zhang et ${al.,}^{(15)}$ Lee and ${Lee,}^{(5)}$ Moriyama and ${Inue,}^{(4)}$ Qu and $Mudawar^{(8)}$)에 대한 평가를 실험결과와 비교를 통해 수행하였다. 가장 우수한 2 상 점성 모델은 Beattie and Whalley 의 모델이었고, 가장 우수한 분리유동 모델은 Qu and Mudawar 의 상관식이였다. 균질유동모델과 분리유동모델 모두에 대해서 2 상 유동양식에 종속성을 나타내었다. 그러므로, 본 연구에서는 2 상 유동 양식에 기초한 새로운 상관식을 균질유동모델과 분리유동모델에 대해 각각을 제시하였다.

Keywords

References

  1. Gunther, A., Khan, S. A., Thalmann, M., Trachsel, F. and Jensen, K. F., 2004, “Transport and Reaction in Microscale Segmented Gas Liquid Flow,” Lab on a Chip., Vol. 4, pp. 278-286 https://doi.org/10.1039/b403982c
  2. Squires, T. M. and Quake, S. R., 2005, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Reviews of Modern Physics, Vol. 77, pp. 977-1026 https://doi.org/10.1103/RevModPhys.77.977
  3. Hidrovo, C. H., Kramer, T. A., Wang, E. N., Vigneron, S., Steinbrenner, J. E., Koo, J. M., Wang, F., Fogg, D. W., Flynn, R. D., Lee, E. S., Cheng, C., Kenny, T. W., Eaton, J. K. and Goodson, K. E., 2006, “Two-Phase Microfluidics for Semiconductor Circuits and Fuel Cells,” Heat Transfer Engineering, Vol. 27, pp. 53-63 https://doi.org/10.1080/01457630500523816
  4. Moriyama, K. and Inoue, A., 1992, “The Thermal-Hydraulic Characteristics of Two-Phase Flow in Extremely Narrow Channels (The Frictional Pressure Drop and Heat Transfer of Boiling Two-Phase Flow, Analytical Model),” Heat Transfer-Japanese Research, Vol. 21, pp. 838-856
  5. Lee, H. J. and Lee, S. Y., 2001, “Pressure Drop Correlations for Two-Phase Flow Within Horizontal Rectangular Channels with Small Heights,” Int. Multiphase Flow, Vol. 27, pp. 783-796 https://doi.org/10.1016/S0301-9322(00)00050-1
  6. Kawahara, A., Chung, P. M.–Y. and Kawaji, M., 2002, “Investigation of Two-Phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel,” Int. J. Multiphase Flow, Vol. 28, pp. 1411-1435 https://doi.org/10.1016/S0301-9322(02)00037-X
  7. Warrier, G. R., Dhir, V. K. and Momoda, L. A., 2002, “Heat Transfer and Pressure Drop in Narrow Rectangular Channels,” Experimental Thermal and Fluid Science, Vol. 26, pp. 53-64 https://doi.org/10.1016/S0894-1777(02)00107-3
  8. Qu, W. and Mudawar, I., 2003, “Measurement and Prediction of Pressure Drop in Two-Phase Microchannel Heat Sinks,” Int. J. Heat Mass Transfer, Vol. 46, pp. 2737-2753 https://doi.org/10.1016/S0017-9310(03)00044-9
  9. Lee, J. and Mudawar, I., 2005, “Two-Phase Flow in High-Heat-Flux Microchannel Heat Sink for Refrigeration Cooling Applications: Part I-pressure Drop Characterisitics,” Int. J. Heat Mass Transfer, Vol. 48, pp. 928-940 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.018
  10. Chung, P. M. –Y. and Kawaji, M., 2004, “The Effect of Channel Diameter on Adiabatic Two-Phase Flow Characteristics in Microchannels,” Int. J. Multiphase Flow, Vol. 30, pp. 735-761 https://doi.org/10.1016/j.ijmultiphaseflow.2004.05.002
  11. Revellin, R. and Thome, J. R., 2007, “Adiabatic Two-Phase Frictional Pressure Drops in Microchannels,” Experimental Thermal and Fluid Science, Vol. 31, pp. 673-685 https://doi.org/10.1016/j.expthermflusci.2006.07.001
  12. Saisorn, S. and Wongwises, S., 2008, “Flow Pattern, Void Fraction and Pressure Drop of Two-Phase Air-Water Flow in Horizontal Circular Microchannel,” Experimental Thermal and Fluid Science, Vol. 32, pp. 748-760 https://doi.org/10.1016/j.expthermflusci.2007.09.005
  13. Mishima, K., Hibiki, T. and Nishihara, H., 1993, “Some Characterisitics of Gas-Liquid Flow in Narrow Rectangular Ducts,” Int. J. Multiphase Flow, Vol. 19, pp. 115-124 https://doi.org/10.1016/0301-9322(93)90027-R
  14. Mishima, K. and Hibiki, T., 1996, “Some Characterisitics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes,” Int. J. Multiphase Flow, Vol. 22, pp. 703-712 https://doi.org/10.1016/0301-9322(96)00010-9
  15. Zhang, W., Hibiki, T. and Mishima, K., 2007, “Two-Phase Frictional Pressure Drop in Minchannel,” 6th Int. Conf. on Multiphase Flow, Leipzig, Germany, S7_Wed_C_38
  16. Tran, T. N., Chyu, M.-C., Wambsganss, M. W. and France, D. M., 2000, “Two-Phase Pressure Drop of Refrigerants During Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development”, Int. J. Multiphase Flow, Vol. 26, pp. 1739-1754 https://doi.org/10.1016/S0301-9322(99)00119-6
  17. Kandlikar, S. G. and Grande, W. J., 2003, “Evolution of Microchannel Flow Passages – Thermo-Hydraulic Performance and Fabrication Technology,” Heat Transfer Engineering, Vol. 24, pp. 3-17 https://doi.org/10.1080/01457630304040
  18. Choi, C. W. and Kim, M. H., 2008, “The Fabrication of a Single Glass Microchannel to Study the Hydrophobicity Effect on Two-Phase Flow Boiling of Water,” J. Micromech. Microeng., Vol. 18, 105016 https://doi.org/10.1088/0960-1317/18/10/105016
  19. Serizawa, A., Feng, Z. and Kawara, Z., 2002, “Two-Phase Flow in Microchannels,” Experimental Thermal and Fluid Science, Vol. 26, pp. 703-714 https://doi.org/10.1016/S0894-1777(02)00175-9
  20. Shih, F. S., 1967, “Laminar Flow in Axisymmetric Conduits by a Rational Approach,” Can. J. Chem. Eng., Vol. 45, pp. 285-294 https://doi.org/10.1002/cjce.5450450507
  21. Owens, W. L., 1961, “Two-Phase Pressure Gradient,” Int. Dev. in Heat Transfer, Pt II, ASME, New York, U.S
  22. MacAdams, W. H., Woods, W. K. and Bryan, R. L., 1942, “Vaporization Inside Horizontal Tubes in Benzene-Oil Mixture,” Trans. ASME, Vol. 64, p. 193
  23. Cicchitti, A., Lombardi, C., Silvestri, M., Solddaini, G. and Zavalluilli, R., 1960, “Two-Phase Cooling Experiments-Pressure Drop, Heat Transfer, and Burnout Measurement,” Energia Nucl., Vol. 7, pp. 407-425
  24. Dukler, A. E., Wicks, M. and Cleveland, 1964, “Pressure Drop and Hold-up in Two-Phase Flow Part A-A Comparison of Existing Correlations and Part BAn Approach Through Similarity Analysis,” AIChE Journal, Vol. 10, No. 1, pp. 38-51 https://doi.org/10.1002/aic.690100117
  25. Beattie, D. R. H. and Whalley, P. B., 1982, “A Simple Two-Phase Flow Frictional Pressure Drop Calculation Method,” Int. J. Multiphase Flow, Vol. 8, pp. 83-87 https://doi.org/10.1016/0301-9322(82)90009-X
  26. Lin, S., Kwok, C. C. K., Li, R. Y., Chen, Z. H. and Chen, Z. Y., 1991, “Local Frictional Pressure Drop During Vaporization for R-12 Through Capillary Tubes,” Int. J. Multiphase Flow, Vol. 17, pp. 95-102 https://doi.org/10.1016/0301-9322(91)90072-B
  27. Lockhart, R. W. and Martinelli, R. C., 1949, “Proposed Correlation of Data for Isothermal Two- Phase, Two-Component Flow in Pipes,” Chem. Eng. Prog., Vol. 45, No. 1, pp. 39-48
  28. Carey, V. P., 1992, Liquid-Vapor Phase Change Phenomena, Taylor & Francis
  29. Awad, M. M. and Muzychka, Y. S., 2006, “Bounds on Two-Phase Frictional Pressure Drop Gradient in Minichannels and Microchannels,” 4th International Conference on Nanochannels, Microchannels and Minichannels, Limerick, Ireland
  30. Ali, M., Sadatomi, M. and Kawaji, M., 1993, “Adiabatic Two-Phase Flow in Narrow Channels Between Two Flat Plates,” The Canadian Journal of Chemical Engineering, Vol. 71, pp. 657-666 https://doi.org/10.1002/cjce.5450710502
  31. Chisholm, D., 1967, “A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow,” Int. J. Heat Mass Transfer, Vol. 10, pp. 1767-1778 https://doi.org/10.1016/0017-9310(67)90047-6

Cited by

  1. Modeling of Interfacial Component for Two-Phase Frictional Pressure Gradient at Microscales vol.6, pp.1687-8140, 2014, https://doi.org/10.1155/2014/492435