References
- Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R. and Becker, J. (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280, 275-286. https://doi.org/10.1006/jmbi.1998.1839
- Li, M., Guo, D., Isales, C. M., Eizirik, D. L., Atkinson, M., She, J. X. and Wang, C. Y. (2005) SUMO wrestling with type 1 diabetes. J. Mol. Med. 83, 504-513. https://doi.org/10.1007/s00109-005-0645-5
- Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355-382. https://doi.org/10.1146/annurev.biochem.73.011303.074118
- Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H. and Shirakawa, M. (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966-35975. https://doi.org/10.1074/jbc.M802528200
- Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. and Jentsch, S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433. https://doi.org/10.1038/nature03665
- Dorval, V. and Fraser, P. E. (2007) SUMO on the road to neurodegeneration. Biochim. Biophys. Acta. 1773, 694-706. https://doi.org/10.1016/j.bbamcr.2007.03.017
- Terashima, T., Kawai, H., Fujitani, M., Maeda, K. and Yasuda, H. (2002) SUMO-1 colocalized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport. 13, 2359- 2364. https://doi.org/10.1097/00001756-200212030-00038
- Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252-6258. https://doi.org/10.1074/jbc.275.9.6252
- Bossis, G. and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349-357. https://doi.org/10.1016/j.molcel.2005.12.019
- Paulsen, C. E. and Carroll, K. S. (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS. Chem. Biol. 5, 47-62. https://doi.org/10.1021/cb900258z
- Grant, M. M., Barber, V. S. and Griffiths, H. R. (2005) The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics. 5, 534-540. https://doi.org/10.1002/pmic.200300924
- Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H. and Wilson, V. G. (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics. 4, 56-72. https://doi.org/10.1074/mcp.M400149-MCP200
- Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M. and Lamond, A. I. (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell Proteomics. 5, 2298-2310. https://doi.org/10.1074/mcp.M600212-MCP200
- Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A. and Hochstrasser, M. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102-4110. https://doi.org/10.1074/jbc.M413209200
- Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. and Yates, J. R. 3rd. (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662-45668. https://doi.org/10.1074/jbc.M409203200
- Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Séraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030-1032. https://doi.org/10.1038/13732
- He, Y. and Smith, R. (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol. Life Sci. 66, 1239-1256. https://doi.org/10.1007/s00018-008-8532-1
- Hay, R. T. (2005) SUMO: a history of modification. Mol. Cell 18, 1-12. https://doi.org/10.1016/j.molcel.2005.03.012
- Perry, J. J., Tainer, J. A. and Boddy, M. N. (2008) A SIMultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201-208. https://doi.org/10.1016/j.tibs.2008.02.001
- Hecker, C., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117-16127. https://doi.org/10.1074/jbc.M512757200
- Song, J., Zhang, Z., Hu, W. and Chen, Y. (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122-40129. https://doi.org/10.1074/jbc.M507059200
- Jakobs, A., Koehnke, J., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion- directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat. Methods. 4, 245-250. https://doi.org/10.1038/nmeth1006
- Gutierrez, G. J. and Ronai, Z. (2006) Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem. Sci. 31, 324-332. https://doi.org/10.1016/j.tibs.2006.04.001
- Jakobs, A., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic. Acids. Res. 35, e109. https://doi.org/10.1093/nar/gkm617
- Pollice, A., Vivo, M. and La Mantia, G. (2008) The promiscuity of ARF interactions with the proteasome. FEBS Lett. 582, 3257-3262. https://doi.org/10.1016/j.febslet.2008.09.026
- Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S. and Mische, S. M. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601-605. https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
- Creese, A. and Cooper, H. J. (2007) Liquid chromatography electron capture dissociation tandem mass spectrometry (LC-ECD-MS/MS) versus liquid chromatography collision-induced dissociation tandem mass spectrometry (LC-CID-MS/MS) for the identification of proteins. J. Am. Soc. Mass. Spectrom. 18, 891-897. https://doi.org/10.1016/j.jasms.2007.01.008
- Chow, S. and Ruskey, F. (2004) Drawing area-proportional Venn and Euler diagrams. Proc. of Graph. Drawing 2912, 466-477. https://doi.org/10.1007/978-3-540-24595-7_44
- Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., Wen, L., Yao, X. and Xue, Y. (2009) Systematic study of protein sumoylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics. 9, 3409-3412. https://doi.org/10.1002/pmic.200800646
Cited by
- Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins vol.5, pp.3, 2015, https://doi.org/10.3390/biom5031441
- Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons vol.51, pp.2, 2013, https://doi.org/10.1038/sc.2012.100
- Characterization of a novel posttranslational modification in polypyrimidine tract-binding proteins by SUMO1 vol.47, pp.4, 2014, https://doi.org/10.5483/BMBRep.2014.47.4.140
- The strategies for identification and quantification of SUMOylation vol.53, pp.52, 2017, https://doi.org/10.1039/C7CC00901A
- Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair vol.20, pp.4, 2014, https://doi.org/10.1089/ars.2013.5529
- Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription vol.281, pp.15, 2014, https://doi.org/10.1111/febs.12866
- Uncovering Ubiquitin and Ubiquitin-like Signaling Networks vol.111, pp.12, 2011, https://doi.org/10.1021/cr200187e
- PP2A as a master regulator of the cell cycle vol.51, pp.3, 2016, https://doi.org/10.3109/10409238.2016.1143913
- Thiol-protease oxidation in age-related neuropathology vol.51, pp.2, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.04.017