DOI QR코드

DOI QR Code

Channel Protection Layer Effect on the Performance of Oxide TFTs

  • KoPark, Sang-Hee (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cho, Doo-Hee (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Hwang, Chi-Sun (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yang, Shin-Hyuk (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Ryu, Min-Ki (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Byun, Chun-Won (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yoon, Sung-Min (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cheong, Woo-Seok (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cho, Kyoung-Ik (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Jeon, Jae-Hong (School of Electronics, Telecommunications, and Computer Engineering, Korea Aerospace University)
  • Received : 2009.05.17
  • Accepted : 2009.10.19
  • Published : 2009.12.31

Abstract

We have investigated the channel protection layer (PL) effect on the performance of an oxide thin film transistor (TFT) with a staggered top gate ZnO TFT and Al-doped zinc tin oxide (AZTO) TFT. Deposition of an ultra-thin PL on oxide semiconductor films enables TFTs to behave well by protecting the channel from a photo-resist (PR) stripper which removes the depleted surface of the active layer and increases the carrier amount in the channel. In addition, adopting a PL prevents channel contamination from the organic PR and results in high mobility and small subthreshold swings. The PL process plays a critical role in the performance of oxide TFTs. When a plasma process is introduced on the surface of an active layer during the PL process, and as the plasma power is increased, the TFT characteristics degrade, resulting in lower mobility and higher threshold voltage. Therefore, it is very important to form an interface using a minimized plasma process.

Keywords

References

  1. K. Nomura et al., "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, no. 7016, 2004, pp. 488-492. https://doi.org/10.1038/nature03090
  2. J. Wager, "Transparent Electronics," Science, vol. 300, no. 5623, 2003, pp. 1245-1246. https://doi.org/10.1126/science.1085276
  3. E.M.C. Fortunato et al., "Fully Transparent ZnO Thin Film Transistor Produced at Room Temperature," Adv. Mater., vol. 17, no. 5, 2005, pp. 590-594. https://doi.org/10.1002/adma.200400368
  4. H.N. Lee et al., "3.5 Inch QCIF+ AM-OLED Panel Based on Oxide TFT Backplane," Tech. Dig. SID07, California, USA, 2007, pp. 1826-1829.
  5. H. Ohta and H. Hosono, "Transparent Oxide Optoelectronics," Material Today, vol. 7, no. 6, 2004, pp. 42-51.
  6. I. Song et al., " Short Channel Characteristics of Gallium–Indium–Zinc–Oxide Thin Film Transistors for Three-Dimensional Stacking Memory," IEEE Electron Device Letters, vol. 29, no. 6, 2008, pp. 549-552. https://doi.org/10.1109/LED.2008.920965
  7. S.-H. K. Park et al., "Transparent and Photo-Stable ZnO Thin-Film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel," Adv. Mater., vol. 21, no. 6, 2009, pp. 678-682. https://doi.org/10.1002/adma.200801470
  8. J. Lee et al., "World's Largest (15-inch) XGA AMLCD Panel Using IGZO Oxide TFT," Tech. Dig. SID08, California, USA, 2008, pp. 625-628.
  9. M. Ito et al., "Amorphous Oxide TFT and Their Applications in Electrophoretic Displays," Physica Status Solidi (a), vol. 205, no. 8, 2008, pp. 1885-1894. https://doi.org/10.1002/pssa.200778910
  10. R.B.M. Cross and M.M. De Souza, "Investigating the Stability of Zinc Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 89, no. 26, 2006, pp. 263513-263515. https://doi.org/10.1063/1.2425020
  11. J.K. Jeong et al., "High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel," Appl. Phys. Lett., vol. 91, no. 11, 2007, pp. 113505-113507. https://doi.org/10.1063/1.2783961
  12. E.M.C. Fortunato et al., "High Mobility Indium Free Amorphous Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 92, no. 22, 2008, pp. 222103-222105. https://doi.org/10.1063/1.2937473
  13. J.K. Jeong et al., "Impact of Device Configuration on the Temperature Instability of Al-Zn-Sn-O Thin Film Transistor," Appl. Phys. Lett., vol. 95, no. 12, 2009, pp. 123505-123507. https://doi.org/10.1063/1.3236694
  14. N.L. Dehuff et al., "Transparent Thin-Film Transistors with Zinc Indium Oxide Channel Layer," J. Appl. Phys., vol. 97, no. 6, 2005, pp. 64505-64508 https://doi.org/10.1063/1.1862767
  15. S.-H. K. Park et al., "Transparent ZnO-TFT Arrays Fabricated by Atomic Layer Deposition," Electrochemical and Solid-State Letters, vol. 11, no. 1, 2008, pp. H10-H14. https://doi.org/10.1149/1.2801017
  16. J.H. Shin et al., "Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors," ETRI Journal, vol. 31, no. 1, 2009, pp. 62-64. https://doi.org/10.4218/etrij.09.0208.0266
  17. C.J. Kim et al., "Characteristics and Cleaning of Dry-Etching-Damaged Layer of Amorphous Oxide Thin-Film Transistor," Electrochemical and Solid-State Letters, vol. 12, no. 4, 2009, pp. H95-H97. https://doi.org/10.1149/1.3067838
  18. I. Yagi, K. Tsukagoshia, and Y. Aoyagi, "Modification of the Electric Conduction at the Pentacene/$SiO_2$ Interface by Surface Termination of $SiO_2$," Appl. Phys. Lett., vol. 86, no. 10, 2005, pp. 103502-103504. https://doi.org/10.1063/1.1875749
  19. A.R. Hepburn et al., "Metastable Defects in Amorphous-Silicon Thin Film Transistors," Physical Review Letters, vol. 56, no. 20, 1986, pp. 2215-2217. https://doi.org/10.1103/PhysRevLett.56.2215
  20. S.-H. K. Park et al., "Characteristics of ZnO Thin Films by Means of Plasma-Enhanced Atomic Layer Deposition," Electrochemical and Solid-State Letters, vol. 9, no. 10, 2006, pp. G299-G301. https://doi.org/10.1149/1.2221770
  21. J.W. Lim and S.J. Yun, "Electrical Properties of Alumina Films by Plasma-Enhanced Atomic Layer Deposition," Electrochemical and Solid-State Letters, vol. 7, no. 8, 2004, pp. F45-F48. https://doi.org/10.1149/1.1756541
  22. D.-H. Cho et al., "Transparent Al–Zn–Sn–O Thin Film Transistors Prepared at Low Temperature," Appl. Phys. Lett., vol. 93, no. 14, 2008, pp. 142111-142113. https://doi.org/10.1063/1.2998612
  23. S.J. Yun et al., "Dependence of Atomic Layer-Deposited $Al_2O_3$ Films Characteristics on Growth Temperature and Al Precursors of $Al(CH_3)_3$ and $AlCl_3$," J. Vac. Sci. Technol. A, vol. 15, no. 6, 1997, pp. 2993-2997. https://doi.org/10.1116/1.580895
  24. C.G. Van de Walle, "Hydrogen as a Cause of Doping in Zinc Oxide," Phys. Rev. Lett., vol. 85, no. 5, 2000, pp. 1012-1015. https://doi.org/10.1103/PhysRevLett.85.1012
  25. R.L. Hoffman, "ZnO-Channel Thin Film Transistor: Channel Mobility," J. Appl. Phys., vol. 95, no. 10, 2004, pp. 5813-5819. https://doi.org/10.1063/1.1712015
  26. J.S. Park et al., "Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor upon Exposure to Water," Appl. Phys. Lett., vol. 92, no. 7, 2008, pp. 72104-72106. https://doi.org/10.1063/1.2838380
  27. J.K. Jeong et al., "Origin of Threshold Voltage Instability in Indium-Gallium-Zinc Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 93, no. 12, 2008, pp. 123508-123510. https://doi.org/10.1063/1.2990657
  28. H. Yin et al., "Bootstrapped Ring Oscillator with Propagation Delay Time below 1.0 nsec/stage by Standard 0.5 $\mu$m Bottom-Gate Amorphous Ga2O3-In2O3-ZnO TFT Technology," Electron Device Meeting, IEEE International, 15-17, Dec. 2008, pp. 1-4.

Cited by

  1. A Protective Layer on the Active Layer of Al-Zn-Sn-O Thin-Film Transistors for Transparent AMOLEDs vol.10, pp.4, 2009, https://doi.org/10.1080/15980316.2009.9652097
  2. Bias stress stability of zinc-tin-oxide thin-film transistors with Al2O3 gate dielectrics vol.28, pp.4, 2009, https://doi.org/10.1116/1.3455494
  3. Characterization of Nonvolatile Memory Behaviors of Al/Poly(vinylidene fluoride-trifluoroethylene)/Al2O3/ZnO Thin-Film Transistors vol.49, pp.4, 2010, https://doi.org/10.1143/jjap.49.04dj06
  4. Electrical Characterization of Metal-Insulator-Semiconductor Capacitors Having Double-Layered Atomic-Layer-Deposited Al[sub 2]O[sub 3] and ZnO for Transparent Thin Film Transistor Applications vol.157, pp.7, 2010, https://doi.org/10.1149/1.3421680
  5. Effect of Double-Layered Al[sub 2]O[sub 3] Gate Insulator on the Bias Stability of ZnO Thin Film Transistors vol.13, pp.8, 2009, https://doi.org/10.1149/1.3428745
  6. Oxide Thin Film Transistor Circuits for Transparent RFID Applications vol.93, pp.10, 2009, https://doi.org/10.1587/transele.e93.c.1504
  7. Device reliability under electrical stress and photo response of oxide TFTs vol.18, pp.10, 2009, https://doi.org/10.1889/jsid18.10.779
  8. Low-Temperature Processed Flexible In–Ga–Zn–O Thin-Film Transistors Exhibiting High Electrical Performance vol.32, pp.12, 2009, https://doi.org/10.1109/led.2011.2167122
  9. Oxide Semiconductor-Based Organic/Inorganic Hybrid Dual-Gate Nonvolatile Memory Thin-Film Transistor vol.58, pp.7, 2011, https://doi.org/10.1109/ted.2011.2139212
  10. Dual-Gate ZnO Thin-Film Transistors with SiNx as Dielectric Layer vol.94, pp.5, 2009, https://doi.org/10.1587/transele.e94.c.786
  11. Light Response of Top Gate InGaZnO Thin Film Transistor vol.50, pp.3, 2011, https://doi.org/10.7567/jjap.50.03cb08
  12. Polymeric ferroelectric and oxide semiconductor-based fully transparent memristor cell vol.102, pp.4, 2009, https://doi.org/10.1007/s00339-011-6280-9
  13. Effect of In-Ga-Zn-O active layer channel composition on process temperature for flexible oxide thin-film transistors vol.30, pp.4, 2009, https://doi.org/10.1116/1.4731257
  14. Improved Stability of Atomic Layer Deposited ZnO Thin Film Transistor by Intercycle Oxidation vol.34, pp.2, 2009, https://doi.org/10.4218/etrij.12.0211.0186
  15. Effect of the Electrode Materials on the Drain-Bias Stress Instabilities of In–Ga–Zn–O Thin-Film Transistors vol.4, pp.10, 2009, https://doi.org/10.1021/am301253x
  16. Trilayer ZnO Thin-Film Transistors With In Situ ${\rm Al}_{2}{\rm O}_{3}$ Passivation vol.34, pp.11, 2009, https://doi.org/10.1109/led.2013.2283337
  17. Double-layered passivation film structure of Al2O3/SiNx for high mobility oxide thin film transistors vol.31, pp.2, 2009, https://doi.org/10.1116/1.4789423
  18. Bilayered Etch-Stop Layer of Al2O3/SiO2for High-Mobility In-Ga-Zn-O Thin-Film Transistors vol.52, pp.r10, 2009, https://doi.org/10.7567/jjap.52.100209
  19. Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma vol.14, pp.4, 2013, https://doi.org/10.4313/teem.2013.14.4.216
  20. Nonvolatile Charge-Trap Memory Transistors With Top-Gate Structure Using In–Ga–Zn-O Active Channel and ZnO Charge-Trap Layer vol.35, pp.3, 2014, https://doi.org/10.1109/led.2014.2301800
  21. Negative-Bias Light Stress Instability Mechanisms of the Oxide-Semiconductor Thin-Film Transistors Using In–Ga-O Channel Layers Deposited With Different Oxygen Partial Pressures vol.61, pp.1, 2009, https://doi.org/10.1109/ted.2013.2288264
  22. Impact of Charge-Trap Layer Conductivity Control on Device Performances of Top-Gate Memory Thin-Film Transistors Using IGZO Channel and ZnO Charge-Trap Layer vol.61, pp.7, 2009, https://doi.org/10.1109/ted.2014.2318751
  23. Effect of Al concentration on Al-doped ZnO channels fabricated by atomic-layer deposition for top-gate oxide thin-film transistor applications vol.32, pp.4, 2009, https://doi.org/10.1116/1.4880823
  24. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly(ethylene naphthalate) substrates vol.3, pp.18, 2009, https://doi.org/10.1039/c5tc00048c
  25. Effect of mid-annealing process on the device characteristics of the TFT using Al-doped ZnO active channels prepared by atomic layer deposition vol.54, pp.3, 2015, https://doi.org/10.7567/jjap.54.03cb01
  26. Indium–Gallium–Zinc–Oxide Thin-Film Transistors Based on Homojunctioned Structure Fabricated With a Self-Aligned Process vol.11, pp.7, 2009, https://doi.org/10.1109/jdt.2015.2418341
  27. Effects of thickness and geometric variations in the oxide gate stack on the nonvolatile memory behaviors of charge-trap memory thin-film transistors vol.111, pp.None, 2015, https://doi.org/10.1016/j.sse.2015.06.003
  28. Highly Stable, High Mobility Al:SnZnInO Back-Channel Etch Thin-Film Transistor Fabricated Using PAN-Based Wet Etchant for Source and Drain Patterning vol.62, pp.11, 2009, https://doi.org/10.1109/ted.2015.2479592
  29. Investigations on the roles of position controlled Al layers incorporated into an Al-doped ZnO active channel during atomic layer deposition for thin film transistor applications vol.55, pp.3, 2009, https://doi.org/10.7567/jjap.55.03cc03
  30. Plasma-Enhanced Atomic Layer Deposition Processed SiO2 Gate Insulating Layer for High Mobility Top-Gate Structured Oxide Thin-Film Transistors vol.37, pp.1, 2009, https://doi.org/10.1109/led.2015.2504931
  31. Microscale Soft Patterning for Solution Processable Metal Oxide Thin Film Transistors vol.8, pp.11, 2009, https://doi.org/10.1021/acsami.5b10847
  32. High-Performance Top-Gate and Self-Aligned In–Ga–Zn-O Thin-Film Transistor Using Coatable Organic Insulators Fabricated at 150 °C vol.37, pp.8, 2016, https://doi.org/10.1109/led.2016.2582319
  33. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors vol.27, pp.32, 2016, https://doi.org/10.1088/0957-4484/27/32/325203
  34. The Influence of Hydrogen on Defects of In–Ga–Zn–O Semiconductor Thin-Film Transistors With Atomic-Layer Deposition of Al2O3 vol.37, pp.9, 2016, https://doi.org/10.1109/led.2016.2594258
  35. 60‐3: Distinguished Paper: Oxide Vertical TFTs for the Application to the Ultra High Resolution Display vol.47, pp.1, 2009, https://doi.org/10.1002/sdtp.10799
  36. Bio-fabrication of nanomesh channels of single-walled carbon nanotubes for locally gated field-effect transistors vol.28, pp.2, 2009, https://doi.org/10.1088/1361-6528/28/2/025304
  37. Influence of Fast Charging on Accuracy of Mobility in ${a}$ -InHfZnO Thin-Film Transistor vol.38, pp.2, 2009, https://doi.org/10.1109/led.2016.2638965
  38. Determination of intrinsic mobility of a bilayer oxide thin-film transistor by pulsed IV method vol.28, pp.17, 2017, https://doi.org/10.1088/1361-6528/aa651c
  39. Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In–Ga–Zn–O Active Channels Prepared by Atomic-Layer Deposition vol.9, pp.27, 2017, https://doi.org/10.1021/acsami.7b04637
  40. Highly Stable Atomic Layer Deposited Zinc Oxide Thin-Film Transistors Incorporating Triple O2 Annealing vol.64, pp.10, 2009, https://doi.org/10.1109/ted.2017.2737552
  41. Outstanding Performance as Cu Top Gate IGZO TFT With Large Trans-Conductance Coefficient by Adopting Double-Layered Al2 O3 /SiNx Gate Insulator vol.214, pp.12, 2009, https://doi.org/10.1002/pssa.201700183
  42. Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates vol.14, pp.6, 2009, https://doi.org/10.1007/s13391-018-0083-5
  43. Discharge Current Analysis Estimating the Defect Sites in Amorphous Hafnia Thin-Film Transistor vol.65, pp.8, 2009, https://doi.org/10.1109/ted.2018.2842193
  44. Effects of Repetitive Mechanical Stress on Flexible Oxide Thin-Film Transistors and Stress Reduction via Additional Organic Layer vol.39, pp.7, 2009, https://doi.org/10.1109/led.2018.2839267
  45. Effects of Hydroxyl Group in AlO x Gate Insulator on the Negative Bias Illumination Instability of In‐Ga‐Zn‐O Thin Film Transistors vol.216, pp.6, 2009, https://doi.org/10.1002/pssa.201800737
  46. Analysis of Mechanical and Electrical Origins of Degradations in Device Durability of Flexible InGaZnO Thin-Film Transistors vol.2, pp.7, 2009, https://doi.org/10.1021/acsaelm.0c00339
  47. Mechanical Durability of Flexible/Stretchable a-IGZO TFTs on PI Island for Wearable Electronic Application vol.3, pp.11, 2009, https://doi.org/10.1021/acsaelm.1c00806
  48. Improving the electrical performance of vertical thin-film transistor by engineering its back-channel interface vol.253, pp.None, 2009, https://doi.org/10.1016/j.mee.2021.111676