Characteristics of the High Speed Shear Test for Sn-3.0wt.%Ag-0.5wt.%Cu Solder Ball Joints

Sn-3.0wt.%Ag-0.5wt.%Cu 솔더 볼 접합부의 고속전단 특성

  • Received : 2009.02.26
  • Published : 2009.09.25

Abstract

The effects of shear speed and tip height on the high speed shear test of Sn-3.0wt.%Ag-0.5wt.%Cu ball joints were investigated. Solder balls of $450{\mu}m$ in diameter were reflowed at $245^{\circ}C$ on a FR4 PCB (Printed Circuit Board) in order to obtain a sample for the high-speed shear test. The UBM was comprised of Cu/Ni/Au, and the shear speed and tip height varied from 0.5 to 3.0 m/s, and from 10 to $135{\mu}m$, respectively. According to the experimental results, faster shear speed enhanced the shear strength of the solder joints, regardless of the tip height. The fraction of ductile (solder) fracture decreased when the shearing speed was raised from 0.5 to 3.0 m/s. With an increasing tip height from 10 to 50 and $135{\mu}m$, the fracture mode changed from pad lift to mixed (ductile and brittle) and ductile fracture, respectively, while the shearing energy also increased in the same order. The shear energy had a proportional relationship with the fraction of the solder fracture.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. Y. L. Huang and K. L. Lin, J. Mater. Res. 23, 1057 (2008) https://doi.org/10.1557/JMR.2008.0129
  2. S. M. L. Nai, J. Wei, and M. Gupta, Journal of Alloy and Compound (article in press) (2008)
  3. P. Limaye, B. Vandevelde, R. Labie, D. Vandepitte, and B. Verlinden, Advanced packaging 31, 51 (2008) https://doi.org/10.1109/TADVP.2007.909459
  4. J. W. Kim and S. B. Jung, Microelectronic Engineering 82, 554 (2005) https://doi.org/10.1016/j.mee.2005.07.055
  5. C.-L. Yeh and Y.-S. Lai, Microelectronics and Reliability 46, 885 (2006) https://doi.org/10.1016/j.microrel.2005.07.113
  6. Y.-H. Liu, C.-M. Chuang, and K.-L. Lin, J. Mater. Res. 19, 2471 (2004) https://doi.org/10.1557/JMR.2004.0310
  7. E. H. Wong, C. S. Selvanayagam, S. K. W. Seah, W. D. van Driel, J. F. J. M. Caers, X. J. Zhao, N. Owens, L. C. Tan, D. R. Frear, M. Leoni, Y.-S. Lai, and C.-L. Yeh, Materials Letters 62, 3031 (2008) https://doi.org/10.1016/j.matlet.2008.01.101
  8. JESD22-B117A, JEDEC Solid State Technology Association (2006)
  9. S. F. Dirnfield and J. J. Ramon, Weld. Jour. Res. Supplement 69, 373 (1990)
  10. C.-C. Chi and T.-H. Chuang, Journal of Electronic Materials 35, 471 (2006) https://doi.org/10.1007/BF02690534
  11. Y.-C. Liu, W.-H. Lin, H.-J. Lin, and T.-H. Chuang, Journal of Electronic Materials 35, 147 (2006) https://doi.org/10.1007/s11664-006-0197-7
  12. J. Y. H. Chia, B. Cotterell, and T. C. Chai, Mater. Sci. Eng. A 417, 259 (2006) https://doi.org/10.1016/j.msea.2005.10.064
  13. F. Song, S. W. R. Lee, K. Newman, B. Sykes, and S. Clark, Proc. 57th Electronic Components and Technology Conference, p.1504, IEEE, Reno, USA (2007)
  14. F. Song, S. W. R. Lee, K. Newman, B. Sykes, and S. Clark, Proc. 57th Electronic Components and Technology Conference, p.364, IEEE, Reno, USA (2007)
  15. S. W. R. Lee and X. Huang, Solder. Surf. Mount Technol. 14, 15 (2002)
  16. J. W. Kim, J. H. Moon, C. C. S, and S. B. Jung, J. Kor. Inst. Met. & Mater. 44, 199 (2006)
  17. A. Choubey, H. Yu, M. Osterman, M. Pecht, F. Yun, L. Yonghong, and X. Ming, Journal of Electronic Materials 37, 1130 (2008) https://doi.org/10.1007/s11664-008-0466-8